GENERAL |
|
|
|
|
Rydberg-Induced Topological Solitons in Three-Dimensional Rotation Spin–Orbit-Coupled Bose–Einstein Condensates |
Yang Wang1,2†, Jinlong Cui1,2†, Hongkai Zhang1,2, Yuan Zhao1,3, Siliu Xu1,3*, and Qin Zhou4* |
1Key Laboratory of Optoelectronic Sensing and Intelligent Control, Hubei University of Science and Technology, Xianning 437100, China 2School of Electronic and Information Engineering, Hubei University of Science and Technology, Xianning 437100, China 3School of Biomedical Engineering and Imaging, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China 4Research Center of Nonlinear Science, School of Mathematics and Physical Sciences, Wuhan Textile University, Wuhan 430200, China
|
|
Cite this article: |
Yang Wang, Jinlong Cui, Hongkai Zhang et al 2024 Chin. Phys. Lett. 41 090302 |
|
|
Abstract We present a novel approach for generating stable three-dimensional (3D) spatiotemporal solitons (SSs) within a rotating Bose–Einstein condensate, incorporating spin–orbit coupling (SOC), a weakly anharmonic potential and cold Rydberg atoms. This intricate system facilitates the emergence of quasi-stable 3D SSs with topological charges $\left\vert m \right \vert \le 3$ in two spinor components, potentially exhibiting diverse spatial configurations. Our findings reveal that the Rydberg long-range interaction, spin–orbit coupling, and rotational angular frequency exert significant influence on the domains of existence and stability of these solitons. Notably, the Rydberg interaction contributes to a reduction in the norm of topological solitons, while the SOC plays a key role in stabilizing the SSs with finite topological charges. This research of SSs exhibits potential applications in precision measurement, quantum information processing, and other advanced technologies.
|
|
Received: 26 June 2024
Published: 02 September 2024
|
|
PACS: |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
33.80.Rv
|
(Multiphoton ionization and excitation to highly excited states (e.g., Rydberg states))
|
|
71.70.Ej
|
(Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect)
|
|
|
|
|
[1] | Kevrekidis P G, Frantzeskakis D J, and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Berlin: Springer) |
[2] | Fetter A L 2009 Rev. Mod. Phys. 81 647 |
[3] | Eiermann B, Anker T, Albiez M, Taglieber M, Treutlein P, Marzlin K P, and Oberthaler M K 2004 Phys. Rev. Lett. 92 230401 |
[4] | Li B B, Zhao Y, Xu S L, Zhou Q, Fu Q D, Ye F W, Hua C B, Chen M W, Hu H J, Zhou Q Q, and Qiu Z C 2023 Chin. Phys. Lett. 40 044201 |
[5] | Ding C, Zhou Q, Xu S, Triki H, Mirzazadeh M, and Liu W 2023 Chin. Phys. Lett. 40 040501 |
[6] | Silberberg Y 1990 Opt. Lett. 15 1282 |
[7] | Bergé L 1998 Phys. Rep. 303 259 |
[8] | Desyatnikov A, Maimistov A, and Malomed B 2000 Phys. Rev. E 61 3107 |
[9] | Mihalache D, Mazilu D, Crasovan L C, Towers I, Buryak A V, Malomed B A, Torner L, Torres J P, and Lederer F 2002 Phys. Rev. Lett. 88 073902 |
[10] | Li H, Xu S L, Belić M R, and Cheng J X 2018 Phys. Rev. A 98 033827 |
[11] | Tikhonenkov I, Malomed B A, and Vardi A 2008 Phys. Rev. Lett. 100 090406 |
[12] | Kartashov Y V, Malomed B A, and Torner L 2011 Rev. Mod. Phys. 83 247 |
[13] | Falcão-Filho E L, de Araújo C B, Boudebs G, Leblond H, and Skarka V 2013 Phys. Rev. Lett. 110 013901 |
[14] | Torner L, Carrasco S, Torres J P, Crasovan L C, and Mihalache D 2001 Opt. Commun. 199 277 |
[15] | Torner L and Kartashov Y V 2009 Opt. Lett. 34 1129 |
[16] | Baizakov B B, Malomed B A, and Salerno M 2004 Phys. Rev. A 70 053613 |
[17] | Mihalache D, Mazilu D, Lederer F, Kartashov Y V, Crasovan L C, and Torner L 2004 Phys. Rev. E 70 055603 |
[18] | Mihalache D, Mazilu D, Lederer F, Malomed B A, Kartashov Y V, Crasovan L C, and Torner L 2005 Phys. Rev. Lett. 95 023902 |
[19] | Chen S F, Guo Q, Xu S L, Belić M R, Zhao Y, Zhao D, and He J R 2019 Appl. Math. Lett. 92 15 |
[20] | Liao B, Li S, Huang C, Luo Z, Pang W, Tan H, Malomed B A, and Li Y 2017 Phys. Rev. A 96 043613 |
[21] | Li Y, Liu Y, Fan Z, Pang W, Fu S, and Malomed B A 2017 Phys. Rev. A 95 063613 |
[22] | Xiong L, Gong M, Fang Z X, and Sun R 2023 Chin. Phys. Lett. 40 127402 |
[23] | Liao Q Y, Hu H J, Chen M W, Shi Y, Zhao Y, Hua C B, Xu S L, Fu Q D, Ye F W, and Zhou Q 2023 Acta Phys. Sin. 72 104202 (in Chinese) |
[24] | Xu Y J 2023 Chaos, Solitons & Fractals 177 114308 |
[25] | Chen Y X 2023 Chaos, Solitons & Fractals 169 113251 |
[26] | Qiu W X, Geng K L, Zhu B W, Liu W, Li J T, and Dai C Q 2024 Nonlinear Dyn. 112 10215 |
[27] | Desyatnikov A S, Sukhorukov A A, and Kivshar Y S 2005 Phys. Rev. Lett. 95 203904 |
[28] | Lashkin V M 2008 Phys. Rev. A 77 025602 |
[29] | Jiang X, Fan Z, Chen Z, Pang W, Li Y, and Malomed B A 2016 Phys. Rev. A 93 023633 |
[30] | Zezyulin D A, Kartashov Y V, Skryabin D V, and Shelykh I A 2018 ACS Photonics 5 3634 |
[31] | Xu S L, Lei Y B, Du J T, Zhao Y, Hua R, and Zeng J H 2022 Chaos, Solitons & Fractals 164 112665 |
[32] | Sakaguchi H, Li B, and Malomed B A 2014 Phys. Rev. E 89 032920 |
[33] | Kartashov Y V, Konotop V V, and Zezyulin D A 2014 Phys. Rev. A 90 063621 |
[34] | Zhang Y C, Zhou Z W, Malomed B A, and Pu H 2015 Phys. Rev. Lett. 115 253902 |
[35] | Friedler I, Petrosyan D, Fleischhauer M, and Kurizki G 2005 Phys. Rev. A 72 043803 |
[36] | Mohapatra A K, Jackson T R, and Adams C S 2007 Phys. Rev. Lett. 98 113003 |
[37] | Firstenberg O, Adams C S, and Hofferberth S 2016 J. Phys. B 49 152003 |
[38] | Maucher F, Henkel N, Saffman M, Królikowski W, Skupin S, and Pohl T 2011 Phys. Rev. Lett. 106 170401 |
[39] | Bai Z, Li W, and Huang G 2019 Optica 6 309 |
[40] | Guo Y W, Xu S L, He J R, Deng P, Belić M R, and Zhao Y 2020 Phys. Rev. A 101 023806 |
[41] | Dong L and Kartashov Y V 2021 Phys. Rev. Lett. 126 244101 |
[42] | Yang J K and Lakoba T I 2008 Stud. Appl. Math. 120 265 |
[43] | Hang C, Li W, and Huang G 2019 Phys. Rev. A 100 043807 |
[44] | Xu S L, Wu T, Hu H J, He J R, Zhao Y, and Fan Z 2024 Chaos, Solitons & Fractals 184 115043 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|