GENERAL |
|
|
|
|
Simulating a Chern Insulator with $C=\pm2$ on Synthetic Floquet Lattice |
Ling-Xiao Lei1, Wei-Chen Wang2, Guang-Yao Huang2*, Shun Hu2, Xi Cao3, Xin-Fang Zhang2, Ming-Tang Deng2,4*, and Ping-Xing Chen1,4* |
1Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha 410073, China 2Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer Science and Technology, National University of Defense Technology, Changsha 410073, China 3Greatwall Quantum Laboratory, Changsha 410006, China 4Hefei National Laboratory, Hefei 230088, China
|
|
Cite this article: |
Ling-Xiao Lei, Wei-Chen Wang, Guang-Yao Huang et al 2024 Chin. Phys. Lett. 41 090301 |
|
|
Abstract The synthetic Floquet lattice, generated by multiple strong drives with mutually incommensurate frequencies, provides a powerful platform for quantum simulation of topological phenomena. In this study, we propose a 4-band tight-binding model of the Chern insulator with a Chern number $C=\pm2$ by coupling two layers of the half Bernevig–Hughes–Zhang lattice and subsequently mapping it onto the Floquet lattice to simulate its topological properties. To determine the Chern number of our Floquet-version model, we extend the energy pumping method proposed by Martin et al. [2017 Phys. Rev. X 7 041008] and the topological oscillation method introduced by Boyers et al. [2020 Phys. Rev. Lett. 125 160505], followed by numerical simulations for both methodologies. The simulation results demonstrate the successful extraction of the Chern number using either of these methods, providing an excellent prediction of the phase diagram that closely aligns with the theoretical one derived from the original bilayer half Bernevig–Hughes–Zhang model. Finally, we briefly discuss a potential experimental implementation for our model. Our work demonstrates significant potential for simulating complex topological matter using quantum computing platforms, thereby paving the way for constructing a more universal simulator for non-interacting topological quantum states and advancing our understanding of these intriguing phenomena.
|
|
Received: 30 May 2024
Published: 02 September 2024
|
|
|
|
|
|
[1] | Ozawa T and Price H M 2019 Nat. Rev. Phys. 1 349 |
[2] | Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeliūnas G, and Lewenstein M 2014 Phys. Rev. Lett. 112 043001 |
[3] | Stuhl B K, Lu H I, Aycock L M, Genkina D, and Spielman I B 2015 Science 349 1514 |
[4] | Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510 |
[5] | Price H M, Ozawa T, and Goldman N 2017 Phys. Rev. A 95 023607 |
[6] | Lustig E, Weimann S, Plotnik Y, Lumer Y, Bandres M A, Szameit A, and Segev M 2019 Nature 567 356 |
[7] | Wang Y, Wu Y K, Jiang Y, Cai M L, Li B W, Mei Q X, Qi B X, Zhou Z C, and Duan L M 2024 Phys. Rev. Lett. 132 130601 |
[8] | Luo X W, Zhou X, Li C F, Xu J S, Guo G C, and Zhou Z W 2015 Nat. Commun. 6 7704 |
[9] | Cardano F, D'Errico A, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E, Marrucci L, Lewenstein M, and Massignan P 2017 Nat. Commun. 8 15516 |
[10] | Wang B, Chen T, and Zhang X 2018 Phys. Rev. Lett. 121 100501 |
[11] | Ozawa T, Price H M, Goldman N, Zilberberg O, and Carusotto I 2016 Phys. Rev. A 93 043827 |
[12] | Yuan L, Shi Y, and Fan S 2016 Opt. Lett. 41 741 |
[13] | Malz D and Smith A 2021 Phys. Rev. Lett. 126 163602 |
[14] | Zhong H, Kartashov Y V, Li Y, and Zhang Y 2023 Phys. Rev. A 107 L021502 |
[15] | Yu D, Li G, Wang L, Leykam D, Yuan L, and Chen X 2023 Phys. Rev. Lett. 130 143801 |
[16] | Martin I, Refael G, and Halperin B 2017 Phys. Rev. X 7 041008 |
[17] | Liu C, Hughes T L, Qi X L, Wang K, and Zhang S C 2008 Phys. Rev. Lett. 100 236601 |
[18] | Qi X L, Wu Y S, and Zhang S C 2006 Phys. Rev. B 74 085308 |
[19] | Boyers E, Crowley P J D, Chandran A, and Sushkov A O 2020 Phys. Rev. Lett. 125 160505 |
[20] | Chiu C K, Teo J C Y, Schnyder A P, and Ryu S 2016 Rev. Mod. Phys. 88 035005 |
[21] | Skirlo S A, Lu L, Igarashi Y, Yan Q H, Joannopoulos J, and Soljačić M 2015 Phys. Rev. Lett. 115 253901 |
[22] | Alase A and Feder D L 2021 Phys. Rev. A 103 053305 |
[23] | Łącki M, Zakrzewski J, and Goldman N 2021 SciPost Phys. 10 112 |
[24] | Liu P, Cui C, and Yu Z M 2024 Phys. Rev. B 109 075141 |
[25] | Gómez-León A and Platero G 2013 Phys. Rev. Lett. 110 200403 |
[26] | Rudner M S and Lindner N H 2020 arXiv:2003.08252 [cond-mat.mes-hall] |
[27] | Crowley P J D, Martin I, and Chandran A 2019 Phys. Rev. B 99 064306 |
[28] | Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915 |
[29] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 |
[30] | Krantz P, Kjaergaard M, Yan F, Orlando T P, Gustavsson S, and Oliver W D 2019 Appl. Phys. Rev. 6 021318 |
[31] | Blais A, Grimsmo A L, Girvin S M, and Wallraff A 2021 Rev. Mod. Phys. 93 025005 |
[32] | Altland A and Zirnbauer M R 1997 Phys. Rev. B 55 1142 |
[33] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|