CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Multi-Scale X-Ray Imaging Technologies for Rechargeable Batteries |
Zihan Xu1,2, Hanwen An1,2, and Jiajun Wang1,2,3* |
1MOE Engineering Research Center for Electrochemical Energy Storage and Carbon Neutrality in Cold Regions, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China 2State Key Laboratory of Space Power Sources, Harbin Institute of Technology, Harbin 150001, China 3Chongqing Research Institute of HIT, Chongqing 401135, China
|
|
Cite this article: |
Zihan Xu, Hanwen An, and Jiajun Wang 2024 Chin. Phys. Lett. 41 088201 |
|
|
Abstract The rapid advancement in electric vehicles and electrochemical energy storage technology has raised the demands placed on rechargeable batteries. It is essential to comprehend the operational principles and degradation mechanisms of batteries across multiple scales to propel the research on rechargeable batteries for the next generation forward. Microstructure, phase information, and lattice of energy materials in both two dimensions and three dimensions can be intuitively obtained through the utilization of x-ray imaging techniques. Additionally, x-ray imaging technology is increasingly gaining attention due to its non-destructive nature and high penetrative capability, enabling in situ experiments and multi-scale spatial resolution. In this review, we initially overview the basic principles and characteristics of several key x-ray imaging technologies. Each x-ray imaging technology is tailored to specific application scenarios. Furthermore, examples of multi-scale implementations of x-ray imaging technologies in the field of rechargeable batteries are discussed. This review is anticipated to augment the comprehension of readers for x-ray imaging techniques as well as to stimulate the development of novel concepts and approaches in rechargeable battery research.
|
|
Received: 31 May 2024
Review
Published: 27 August 2024
|
|
PACS: |
82.80.Ej
|
(X-ray, M?ssbauer, and other γ-ray spectroscopic analysis methods)
|
|
82.47.Aa
|
(Lithium-ion batteries)
|
|
82.45.Fk
|
(Electrodes)
|
|
82.45.Jn
|
(Surface structure, reactivity and catalysis)
|
|
|
|
|
[1] | Tang F C, Wu Z B, Yang C, Osenberg M, Hilger A, Dong K, Markötter H, Manke I, Sun F, Chen L B, and Cui G L 2021 Small Methods 5 2100557 |
[2] | Shao R W, Sun Z F, Wang L, Pan J H, Yi L C, Zhang Y G, Han J J, Yao Z P, Li J, Wen Z H, Chen S Q, Chou S L, Peng D L, and Zhang Q B 2024 Angew. Chem. Int. Ed. 63 e202320183 |
[3] | Dong Q Y, Yi R W, Qi J Z, Shen Y B, and Chen L W 2022 Chin. Phys. Lett. 39 038201 |
[4] | Sun Z F, Pan J H, Chen W W, Chen H Y, Zhou S H, Wu X Y, Wang Y S, Kim K, Li J, Liu H D, Yuan Y F, Wang J W, Su D, Peng D L, and Zhang Q B 2024 Adv. Energy Mater. 14 2303165 |
[5] | Sun Z F, Li M, Xiao B S, Liu X, Lin H C, Jiang B, Liu H D, Li M C, Peng D L, and Zhang Q B 2022 eTransportation 14 100203 |
[6] | Dong J Y, Wu F, Zhao J Y, Shi Q, Lu Y, Li N, Cao D Y, Li W B, Hao J N, Yang X L, Chen L, and Su Y F 2023 Energy Storage Mater. 60 102825 |
[7] | Cao C T, Toney M F, Sham T K, Harder R, Shearing P R, Xiao X H, and Wang J J 2020 Mater. Today 34 132 |
[8] | Lou S F, Sun N, Zhang F, Liu Q S, and Wang J J 2021 Acc. Mater. Res. 2 1177 |
[9] | Qian G N, Wang J Y, Li H, Ma Z F, Pianetta P, Li L S, Yu X Q, and Liu Y J 2022 Natl. Sci. Rev. 9 nwab146 |
[10] | Shen F Y, Dixit M B, Xiao X H, and Hatzell K B 2018 ACS Energy Lett. 3 1056 |
[11] | Wang J J, Chen-Wiegart Y C K, and Wang J 2014 Nat. Commun. 5 4570 |
[12] | Meirer F, Cabana J, Liu Y J, Mehta A, Andrews J C, and Pianetta P 2011 J. Synchrotron Rad. 18 773 |
[13] | Wang J J, Chen-Wiegart Y C K, and Wang J 2013 Chem. Commun. 49 6480 |
[14] | Black A P, Sorrentino A, Fauth F, Yousef I, Simonelli L, Frontera C, Ponrouch A, Tonti D, and Palacín M R 2023 Chem. Sci. 14 1641 |
[15] | de Smit E, Swart I, Creemer J F, Hoveling G H, Gilles M K, Tyliszczak T, Kooyman P J, Zandbergen H W, Morin C, Weckhuysen B M, and de Groot F M F 2008 Nature 456 222 |
[16] | Pattammattel A, Tappero R, Ge M, Chu Y S, Huang X, Gao Y, and Yan H 2020 Sci. Adv. 6 eabb3615 |
[17] | Wang L G, Wang J J, and Zuo P J 2018 Small Methods 2 1700293 |
[18] | Li J Z, Chen S, Ratner D, Blu T, Pianetta P, and Liu Y J 2023 Proc. Natl. Acad. Sci. USA 120 e2314542120 |
[19] | Shapiro D A, Yu Y S, Tyliszczak T, Cabana J, Celestre R, Chao W L, Kaznatcheev K, Kilcoyne A L D, Maia F, Marchesini S, Meng Y S, Warwick T, Yang L L, and Padmore H A 2014 Nat. Photonics 8 765 |
[20] | Wang L G, Dai A, Xu W Q, Lee S, Cha W, Harder R, Liu T C, Ren Y, Yin G P, Zuo P J, Wang J, Lu J, and Wang J J 2020 J. Am. Chem. Soc. 142 14966 |
[21] | Yang F F, Liu Y J, Martha S K, Wu Z Y, Andrews J C, Ice G E, Pianetta P, and Nanda J 2014 Nano Lett. 14 4334 |
[22] | Xu Y H, Hu E Y, Yang F F, Corbett J, Sun Z H, Lyu Y C, Yu X Q, Liu Y J, Yang X Q, and Li H 2016 Nano Energy 28 164 |
[23] | Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, and Wang J J 2020 Nat. Commun. 11 5700 |
[24] | Feng J R, Zhou W H, Chen Z, and Hao Z X 2024 Nano Energy 119 109028 |
[25] | Xia S H, Mu L Q, Xu Z R, Wang J Y, Wei C X, Liu L, Pianetta P, Zhao K J, Yu X Q, Lin F, and Liu Y J 2018 Nano Energy 53 753 |
[26] | Zhang F, Lou S F, Li S, Yu Z J, Liu Q S, Dai A, Cao C T, Toney M F, Ge M Y, Xiao X H, Lee W K, Yao Y D, Deng J J, Liu T C, Tang Y P, Yin G P, Lu J, Su D, and Wang J J 2020 Nat. Commun. 11 3050 |
[27] | Lin F, Nordlund D, Li Y Y, Quan M K, Cheng L, Weng T C, Liu Y J, Xin H L, and Doeff M M 2016 Nat. Energy 1 15004 |
[28] | Wang J J, Chen-Wiegart Y C K, Eng C, Shen Q, and Wang J 2016 Nat. Commun. 7 12372 |
[29] | Yu Z J, Shan H M, Zhong Y L, Zhang X, and Hong G 2022 ACS Energy Lett. 7 3151 |
[30] | Zhang J, Wang Q C, Li S F, Jiang Z S, Tan S, Wang X L, Zhang K, Yuan Q X, Lee S J, Titus C J, Irwin K D, Nordlund D, Lee J S, Pianetta P, Yu X Q, Xiao X H, Yang X Q, Hu E Y, and Liu Y J 2020 Nat. Commun. 11 6342 |
[31] | Yu Z J, Wang J J, Wang L G, Xie Y, Lou S F, Jiang Z X, Ren Y, Lee S, Zuo P J, Huo H, Yin G P, Pan Q M, and Wang J 2019 ACS Energy Lett. 4 2007 |
[32] | An H W, Liu Q S, Deng B, Wang J, Li M L, Li X, Lou S F, and Wang J J 2023 Adv. Funct. Mater. 33 2305186 |
[33] | Lu X K, Bertei A, Finegan D P, Tan C, Daemi S R, Weaving J S, O'Regan K B, Heenan T M M, Hinds G, Kendrick E, Brett D J L, and Shearing P R 2020 Nat. Commun. 11 2079 |
[34] | Liu Q S, An H W, Wang X F, Kong F P, Sun Y C, Gong Y X, Lou S F, Shi Y F, Sun N, Deng B, Wang J, and Wang J J 2023 Natl. Sci. Rev. 10 nwac272 |
[35] | Raza H, Bai S Y, Cheng J Y, Majumder S, Zhu H, Liu Q, Zheng G P, Li X F, and Chen G H 2023 Electrochem. Energy Rev. 6 29 |
[36] | Wu Z, Li X H, Zheng C, Fan Z, Zhang W K, Huang H, Gan Y P, Xia Y, He X P, Tao X Y, and Zhang J 2023 Electrochem. Energy Rev. 6 10 |
[37] | Tan C, Heenan T M M, Ziesche R F, Daemi S R, Hack J, Maier M, Marathe S, Rau C, Brett D J L, and Shearing P R 2018 ACS Appl. Energy Mater. 1 5090 |
[38] | Tan C, Kok M D R, Daemi S R, Brett D J L, and Shearing P R 2019 Phys. Chem. Chem. Phys. 21 4145 |
[39] | Ho A S, Parkinson D Y, Finegan D P, Trask S E, Jansen A N, Tong W, and Balsara N P 2021 ACS Nano 15 10480 |
[40] | Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, and Balsara N P 2013 Nat. Mater. 13 69 |
[41] | Shearing P R, Howard L E, Jørgensen P S, Brandon N P, and Harris S J 2010 Electrochem. Commun. 12 374 |
[42] | Müller S, Eller J, Ebner M, Burns C, Dahn J, and Wood V 2018 J. Electrochem. Soc. 165 A339 |
[43] | Li B R, Chao Y, Li M C, Xiao Y B, Li R, Yang K, Cui X C, Xu G, Li L Y, Yang C K, Yu Y, Wilkinson D P, and Zhang J J 2023 Electrochem. Energy Rev. 6 7 |
[44] | Wang Q, Lu T T, Xiao Y B, Wu J Y, Guan L X, Hou L F, Du H Y, Wei H, Liu X D, Yang C K, Wei Y H, Zhou H H, and Yu Y 2023 Electrochem. Energy Rev. 6 22 |
[45] | Taiwo O O, Finegan D P, Paz-Garcia J M, Eastwood D S, Bodey A J, Rau C, Hall S A, Brett D J L, Lee P D, and Shearing P R 2017 Phys. Chem. Chem. Phys. 19 22111 |
[46] | Sun F, Zielke L, Markötter H, Hilger A, Zhou D, Moroni R, Zengerle R, Thiele S, Banhart J, and Manke I 2016 ACS Nano 10 7990 |
[47] | Liu Q S, Zhu G, Li R H, Lou S F, Huo H, Ma Y L, An J L, Cao C T, Kong F P, Jiang Z X, Lu M, Tong Y J, Ci L J, Yin G P, and Wang J J 2021 Energy Storage Mater. 41 1 |
[48] | Sun F, Zhou D, He X, Osenberg M, Dong K, Chen L B, Mei S L, Hilger A, Markötter H, Lu Y, Dong S M, Marathe S, Rau C, Hou X, Li J, Stan M C, Winter M, Dominko R, and Manke I 2019 ACS Energy Lett. 5 152 |
[49] | Dienemann L L, Geller L C, Huang Y, Zenyuk I V, and Panzer M J 2023 ACS Appl. Mater. & Interfaces 15 8492 |
[50] | Finegan D P, Scheel M, Robinson J B, Tjaden B, Hunt I, Mason T J, Millichamp J, Di Michiel M, Offer G J, Hinds G, Brett D J L, and Shearing P R 2015 Nat. Commun. 6 6924 |
[51] | Finegan D P, Darcy E, Keyser M, Tjaden B, Heenan T M M, Jervis R, Bailey J J, Malik R, Vo N T, Magdysyuk O V, Atwood R, Drakopoulos M, DiMichiel M, Rack A, Hinds G, Brett D J L, and Shearing P R 2017 Energy & Environ. Sci. 10 1377 |
[52] | Yokoshima T, Mukoyama D, Maeda F, Osaka T, Takazawa K, Egusa S, Naoi S, Ishikura S, and Yamamoto K 2018 J. Power Sources 393 67 |
[53] | Finegan D P, Scheel M, Robinson J B, Tjaden B, Di Michiel M, Hinds G, Brett D J L, and Shearing P R 2016 Phys. Chem. Chem. Phys. 18 30912 |
[54] | Du W J, Owen R E, Jnawali A, Neville T P, Iacoviello F, Zhang Z Y, Liatard S, Brett D J L, and Shearing P R 2022 J. Power Sources 520 230818 |
[55] | Pfrang A, Kersys A, Kriston A, Sauer D U, Rahe C, Käbitz S, and Figgemeier E 2018 J. Power Sources 392 168 |
[56] | Pfrang A, Kersys A, Kriston A, Sauer D U, Rahe C, Käbitz S, and Figgemeier E 2019 J. Electrochem. Soc. 166 A3745 |
[57] | Ziesche R F, Arlt T, Finegan D P, Heenan T M M, Tengattini A, Baum D, Kardjilov N, Markötter H, Manke I, Kockelmann W, Brett D J L, and Shearing P R 2020 Nat. Commun. 11 777 |
[58] | Gelb J, Finegan D P, Brett D J L, and Shearing P R 2017 J. Power Sources 357 77 |
[59] | Qian G N, Monaco F, Meng D C, Lee S J, Zan G B, Li J Z, Karpov D, Gul S, Vine D, Stripe B, Zhang J, Lee J S, Ma Z F, Yun W B, Pianetta P, Yu X Q, Li L S, Cloeten P, and Liu Y J 2021 Cell Rep. Phys. Sci. 2 100554 |
[60] | Bond T, Gauthier R, Eldesoky A, Harlow J, and Dahn J R 2022 J. Electrochem. Soc. 169 020501 |
[61] | Bond T, Gauthier R, Gasilov S, and Dahn J R 2022 J. Electrochem. Soc. 169 080531 |
[62] | Guo Q B, Han S, Lu Y X, Chen L Q, and Hu Y S 2023 Chin. Phys. Lett. 40 028801 |
[63] | Gai J L, Yang J R, Yang W, Li Q, Wu X D, and Li H 2023 Chin. Phys. Lett. 40 086101 |
[64] | Mo S K, An H W, Liu Q S, Zhu J M, Fu C K, Song Y J, and Wang J J 2024 Energy Storage Mater. 65 103179 |
[65] | Li J Z, Li S F, Zhang Y X, Yang Y, Russi S, Qian G N, Mu L Q, Lee S J, Yang Z J, Lee J S, Pianetta P, Qiu J S, Ratner D, Cloetens P, Zhao K J, Lin F, and Liu Y J 2021 Adv. Energy Mater. 11 2102122 |
[66] | Zan G B, Qian G N, Gul S, Li J Z, Matusik K, Wang Y, Lewis S, Yun W B, Pianetta P, Vine D J, Li L S, and Liu Y J 2022 Proc. Natl. Acad. Sci. USA 119 e2203199119 |
[67] | Kang I, Wu Z L, Jiang Y, Yao Y D, Deng J J, Klug J, Vogt S, and Barbastathis G 2023 Light: Sci. & Appl. 12 131 |
[68] | Wu L L, Bak S, Shin Y, Chu Y S, Yoo S, Robinson I K, and Huang X J 2023 npj Comput. Mater. 9 43 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|