Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 078501    DOI: 10.1088/0256-307X/41/7/078501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Tilted Perpendicular Anisotropy-Induced Spin-Orbit Ratchet Effects
Bin Chen1, Yuantu Long1, Yulin Nie1, Ziyu Ling1, Tianping Ma5, Ruixuan Zhang3, Yizheng Wu2, Yongming Luo1,4*, and Ningning Wang1*
1School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
2State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
3Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou 311121, China
4Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China
5Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
Cite this article:   
Bin Chen, Yuantu Long, Yulin Nie et al  2024 Chin. Phys. Lett. 41 078501
Download: PDF(1222KB)   PDF(mobile)(1514KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using micromagnetic simulations, we demonstrate the tilted perpendicular anisotropy-induced spin-orbit ratchet effect. In spin-orbit torque (SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states (upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls (DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the leaky-integrate-fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for designs of further SOT-based devices.
Received: 17 April 2024      Published: 18 July 2024
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/078501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/078501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Bin Chen
Yuantu Long
Yulin Nie
Ziyu Ling
Tianping Ma
Ruixuan Zhang
Yizheng Wu
Yongming Luo
and Ningning Wang
[1] Souza J C B, Vizarim N P, Reichhardt C J O et al. 2021 Phys. Rev. B 104 054434
[2] Migita K, Yamada K, and Nakatani Y 2020 Appl. Phys. Express 13 073003
[3] Franken J H, Swagten H J M, and Koopmans B 2012 Nat. Nanotechnol. 7 499
[4] Yamaguchi R, Yamada K, and Nakatani Y 2021 Jpn. J. Appl. Phys. 60 010904
[5] Wang J L, Xia J, Zhang X C et al. 2020 Appl. Phys. Lett. 117 202401
[6] Lavrijsen R, Lee J H, Fernández-Pacheco A et al. 2013 Nature 493 647
[7] Liu L Q, Pai C F, Li Y et al. 2012 Science 336 555
[8] Ramaswamy R, Lee J M, Cai K M, and Yang H 2018 Appl. Phys. Rev. 5 031107
[9] Haazen P P J, Murè E, Franken J H et al. 2013 Nat. Mater. 12 299
[10] Hao Q and Xiao G 2015 Phys. Rev. B 91 224413
[11] Hao Q and Xiao G 2015 Phys. Rev. Appl. 3 034009
[12] Torrejon J, Garcia-Sanchez F, Taniguchi T et al. 2015 Phys. Rev. B 91 214434
[13] Huang Y H, Yang C Y, Cheng C W et al. 2022 Adv. Funct. Mater. 32 2111653
[14] Zhu L 2023 Adv. Mater. 35 2300853
[15] Liu L, Qin Q, Lin W N et al. 2019 Nat. Nanotechnol. 14 939
[16] Luo Y M, Zhuang Y S, Feng Z S et al. 2022 Front. Phys. 17 53511
[17] Luo Y M, Liang M F, Feng Z S et al. 2023 arXiv:2306.02616 [cond-mat.mtrl-sci]
[18] Liu L Q, Lee O J, Gudmundsen T J et al. 2012 Phys. Rev. Lett. 109 096602
[19] Ryu K S, Thomas L, Yang S H et al. 2013 Nat. Nanotechnol. 8 527
[20] Li S, Kang W, Huang Y Q et al. 2017 Nanotechnology 28 31LT01
[21] Prezioso M, Merrikh-Bayat F, Hoskins B D et al. 2015 Nature 521 61
[22] Lequeux S, Sampaio J, Cros V et al. 2016 Sci. Rep. 6 31510
[23] Chen P Y, Peng X, and Yu S 2017 IEEE Int. Electron Devices Meeting (IEDM), 2–6 December 2017, San Francisco, CA, USA, p. 6.1.1
[24] Liu J H, Xu T, Feng H M et al. 2022 Adv. Funct. Mater. 32 2107870
[25] Song K M, Jeong J S, Pan B et al. 2020 Nat. Electron. 3 148
Related articles from Frontiers Journals
[1] Guo-Liang Yu, Xin-Yan He, Sheng-Bin Shi, Yang Qiu, Ming-Min Zhu, Jia-Wei Wang, Yan Li, Yuan-Xun Li, Jie Wang, and Hao-Miao Zhou. The Combined Effect of Spin-Transfer Torque and Voltage-Controlled Strain Gradient on Magnetic Domain-Wall Dynamics: Toward Tunable Spintronic Neuron[J]. Chin. Phys. Lett., 2024, 41(5): 078501
[2] Gaojie Zhang, Qingyuan Luo, Xiaokun Wen, Hao Wu, Li Yang, Wen Jin, Luji Li, Jia Zhang, Wenfeng Zhang, Haibo Shu, and Haixin Chang. Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals[J]. Chin. Phys. Lett., 2023, 40(11): 078501
[3] Anpeng He, Yu Lu, Jun Du, Yufei Li, Zhong Shi, Di Wu, and Qingyu Xu. Spin Hall Magnetoresistance in Pt/BiFeO$_{3}$ Bilayer[J]. Chin. Phys. Lett., 2023, 40(11): 078501
[4] Xinlong Dong, Xin Jia, Zhi Yan, Xuemin Shen, Zeyu Li, Zhenhua Qiao, and Xiaohong Xu. Spin Transport Properties of MnBi$_{2}$Te$_{4}$-Based Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2023, 40(8): 078501
[5] Guibin Lan, Hongjun Xu, Yu Zhang, Chen Cheng, Bin He, Jiahui Li, Congli He, Caihua Wan, Jiafeng Feng, Hongxiang Wei, Jia Zhang, Xiufeng Han, and Guoqiang Yu. Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr[J]. Chin. Phys. Lett., 2023, 40(5): 078501
[6] Lifen Wang. Cubic Ice Captured by In Situ Transmission Electron Microscope[J]. Chin. Phys. Lett., 2023, 40(5): 078501
[7] Wen Jin, Gaojie Zhang, Hao Wu, Li Yang, Wenfeng Zhang, and Haixin Chang. Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics[J]. Chin. Phys. Lett., 2023, 40(5): 078501
[8] Zhaonian Jin, Minhang Song, Henan Fang, Lin Chen, Jiangwei Chen, and Zhikuo Tao. Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings[J]. Chin. Phys. Lett., 2022, 39(10): 078501
[9] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 078501
[10] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 078501
[11] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 078501
[12] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 078501
[13] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 078501
[14] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 078501
[15] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 078501
Viewed
Full text


Abstract