CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries |
Jing-Yuan Ma1†, Yu-Li Huang2†, Han-Jie Zhou1, Yuan-Yuan Wang1, Jian-Gang Li1, Xi-Qian Yu2, Hong Li2*, and Yan Li1* |
1College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Jing-Yuan Ma, Yu-Li Huang, Han-Jie Zhou et al 2024 Chin. Phys. Lett. 41 078202 |
|
|
Abstract Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO$_{4}$/BaTiO$_{3}$ composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO$_{3}$ possesses a high room-temperature lithium-ion conductivity ($9.85\times 10^{-4}$ S$\cdot$cm$^{-1})$, high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li$^{+}$/Li). The Li$|$Li symmetric battery assembled with 5 wt% BaTiO$_{3}$ can be stably circulated for 800 h at 0.1 mA$\cdot$cm$^{-2}$, and the LiFePO$_{4}|$CSE$|$Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO$_{3}$ ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology.
|
|
Received: 27 March 2024
Published: 24 July 2024
|
|
|
|
|
|
[1] | Goodenough J B 2014 Energy & Environ. Sci. 7 14 |
[2] | Ulissi U, Agostini M, Ito S, Aihara Y, and Hassoun J 2016 Solid State Ionics 296 13 |
[3] | Chen-Yang Y W, Chen H C, Lin F J, and Chen C C 2002 Solid State Ionics 150 327 |
[4] | Zhang Y L, Xia H L, Lin J, Chen S J, and Xu X X 2018 Energy Storage Sci. Technol. 7 994 |
[5] | Manthiram A, Yu X, and Wang S 2017 Nat. Rev. Mater. 2 16103 |
[6] | Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, and Tu J P 2018 J. Power Sources 374 107 |
[7] | Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, and Yao X Y 2018 Energy Storage Mater. 14 58 |
[8] | Li Y X, Song S B, Kim H et al. 2023 Science 381 50 |
[9] | Chen Y T, Chuang Y C, Su J H, Yu H C, and Chen-Yang Y W 2011 J. Power Sources 196 2802 |
[10] | Mindemark J, Lacey M J, Bowden T, and Brandell D 2018 Prog. Polym. Sci. 81 114 |
[11] | Wu I D and Chang F C 2007 Polymer 48 989 |
[12] | Zhang J, Zheng C, Lou J T et al. 2019 J. Power Sources 412 78 |
[13] | Zheng C, Li L J, Wang K et al. 2021 Batteries Supercaps 4 8 |
[14] | Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X, and Zhang J 2022 J. Mater. Chem. A 10 3400 |
[15] | Yang T Q, Wang C, Zhang W K et al. 2022 Rare Met. 41 1870 |
[16] | Zhou J and Fedkiw P S 2004 Solid State Ionics 166 275 |
[17] | Li Q, Imanishi N, Takeda Y, Hirano A, and Yamamoto O 2002 Ionics 8 79 |
[18] | Zhang Y, Wang X, Feng W, Zhen Y, Zhao P, Li L, and Cai Z 2019 J. Solid State Electrochem. 23 749 |
[19] | Guo S K, Tan S D, Ma J B et al. 2024 Energy & Environ. Sci. 17 3797 |
[20] | Hu P, Chai J, Duan Y, Liu Z, Cui G, and Chen L 2016 J. Mater. Chem. A 4 10070 |
[21] | Yu X, Li J, and Manthiram A 2020 ACS Mater. Lett. 2 317 |
[22] | Wang S H, Kuo P L, Hsieh C T, and Teng H 2014 ACS Appl. Mater. & Interfaces 6 19360 |
[23] | Huang B Y, Wang Z X, Chen L Q, Xue R J, and Wang F S 1996 Solid State Ionics 91 279 |
[24] | Choe H S, Carroll B G, Pasquariello D M, and Abraham K M 1997 Chem. Mater. 9 369 |
[25] | Stone R S 1997 J. Geophys. Res.: Atmos. 102 21769 |
[26] | Borkowska R, Reda A, Zalewska A, and Wieczorek W 2001 Electrochim. Acta 46 1737 |
[27] | Salomon M, Xu M, Eyring E M, and Petrucci S 1994 J. Phys. Chem. 98 8234 |
[28] | Wieczorek W, Lipka P, Żukowska G, and Wyciślik H 1998 J. Phys. Chem. B 102 6968 |
[29] | Fan L, Nan C W, and Zhao S 2003 Solid State Ionics 164 81 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|