Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 078202    DOI: 10.1088/0256-307X/41/7/078202
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries
Jing-Yuan Ma1†, Yu-Li Huang2†, Han-Jie Zhou1, Yuan-Yuan Wang1, Jian-Gang Li1, Xi-Qian Yu2, Hong Li2*, and Yan Li1*
1College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102627, China
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Jing-Yuan Ma, Yu-Li Huang, Han-Jie Zhou et al  2024 Chin. Phys. Lett. 41 078202
Download: PDF(1767KB)   PDF(mobile)(1799KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO$_{4}$/BaTiO$_{3}$ composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO$_{3}$ possesses a high room-temperature lithium-ion conductivity ($9.85\times 10^{-4}$ S$\cdot$cm$^{-1})$, high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li$^{+}$/Li). The Li$|$Li symmetric battery assembled with 5 wt% BaTiO$_{3}$ can be stably circulated for 800 h at 0.1 mA$\cdot$cm$^{-2}$, and the LiFePO$_{4}|$CSE$|$Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO$_{3}$ ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology.
Received: 27 March 2024      Published: 24 July 2024
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  88.80.F- (Energy storage technologies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/078202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/078202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jing-Yuan Ma
Yu-Li Huang
Han-Jie Zhou
Yuan-Yuan Wang
Jian-Gang Li
Xi-Qian Yu
Hong Li
and Yan Li
[1] Goodenough J B 2014 Energy & Environ. Sci. 7 14
[2] Ulissi U, Agostini M, Ito S, Aihara Y, and Hassoun J 2016 Solid State Ionics 296 13
[3] Chen-Yang Y W, Chen H C, Lin F J, and Chen C C 2002 Solid State Ionics 150 327
[4]Zhang Y L, Xia H L, Lin J, Chen S J, and Xu X X 2018 Energy Storage Sci. Technol. 7 994
[5] Manthiram A, Yu X, and Wang S 2017 Nat. Rev. Mater. 2 16103
[6] Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, and Tu J P 2018 J. Power Sources 374 107
[7] Chen S J, Xie D J, Liu G Z, Mwizerwa J P, Zhang Q, Zhao Y R, Xu X X, and Yao X Y 2018 Energy Storage Mater. 14 58
[8] Li Y X, Song S B, Kim H et al. 2023 Science 381 50
[9] Chen Y T, Chuang Y C, Su J H, Yu H C, and Chen-Yang Y W 2011 J. Power Sources 196 2802
[10] Mindemark J, Lacey M J, Bowden T, and Brandell D 2018 Prog. Polym. Sci. 81 114
[11] Wu I D and Chang F C 2007 Polymer 48 989
[12] Zhang J, Zheng C, Lou J T et al. 2019 J. Power Sources 412 78
[13] Zheng C, Li L J, Wang K et al. 2021 Batteries Supercaps 4 8
[14] Wang C, Yang T, Zhang W, Huang H, Gan Y, Xia Y, He X, and Zhang J 2022 J. Mater. Chem. A 10 3400
[15] Yang T Q, Wang C, Zhang W K et al. 2022 Rare Met. 41 1870
[16] Zhou J and Fedkiw P S 2004 Solid State Ionics 166 275
[17] Li Q, Imanishi N, Takeda Y, Hirano A, and Yamamoto O 2002 Ionics 8 79
[18] Zhang Y, Wang X, Feng W, Zhen Y, Zhao P, Li L, and Cai Z 2019 J. Solid State Electrochem. 23 749
[19] Guo S K, Tan S D, Ma J B et al. 2024 Energy & Environ. Sci. 17 3797
[20] Hu P, Chai J, Duan Y, Liu Z, Cui G, and Chen L 2016 J. Mater. Chem. A 4 10070
[21] Yu X, Li J, and Manthiram A 2020 ACS Mater. Lett. 2 317
[22] Wang S H, Kuo P L, Hsieh C T, and Teng H 2014 ACS Appl. Mater. & Interfaces 6 19360
[23] Huang B Y, Wang Z X, Chen L Q, Xue R J, and Wang F S 1996 Solid State Ionics 91 279
[24] Choe H S, Carroll B G, Pasquariello D M, and Abraham K M 1997 Chem. Mater. 9 369
[25] Stone R S 1997 J. Geophys. Res.: Atmos. 102 21769
[26] Borkowska R, Reda A, Zalewska A, and Wieczorek W 2001 Electrochim. Acta 46 1737
[27] Salomon M, Xu M, Eyring E M, and Petrucci S 1994 J. Phys. Chem. 98 8234
[28] Wieczorek W, Lipka P, Żukowska G, and Wyciślik H 1998 J. Phys. Chem. B 102 6968
[29] Fan L, Nan C W, and Zhao S 2003 Solid State Ionics 164 81
Related articles from Frontiers Journals
[1] Jianqun Wang, Ning Zhao, and Xiangxin Guo. Long-Cycle Lithium Batteries with LiNi$_{0.8}$Co$_{0.1}$Mn$_{0.1}$O$_{2}$ Cathodes above 4.5 V Enabled by Uniform Coating of Nanosized Garnet Electrolytes[J]. Chin. Phys. Lett., 2024, 41(7): 078202
[2] Jianli Gai, Jirong Yang, Wei Yang, Quan Li, Xiaodong Wu, and Hong Li. Lithium Ion Batteries Operated at $-100\,^{\circ}\!$C[J]. Chin. Phys. Lett., 2023, 40(8): 078202
[3] Quan Li, Yang Yang, Xiqian Yu, and Hong Li. A 700 W$\cdot$h$\cdot$kg$^{-1}$ Rechargeable Pouch Type Lithium Battery[J]. Chin. Phys. Lett., 2023, 40(4): 078202
[4] Qingyu Dong, Ruowei Yi, Jizhen Qi, Yanbin Shen, and Liwei Chen. Probing the Air Storage Failure Mechanism of Ni-Rich Layered Cathode Materials[J]. Chin. Phys. Lett., 2022, 39(3): 078202
[5] Di-Xing Ni, Yao-Dong Liu, Zhi Deng, Dian-Cheng Chen, Xin-Xin Zhang, Tao Wang, Shuai Li, and Yu-Sheng Zhao. Wet Mechanical Milling Induced Phase Transition to Cubic Anti-Perovskite Li$_{2}$OHCl[J]. Chin. Phys. Lett., 2022, 39(2): 078202
[6] Le-Qing Zhang, Qing-Tao Xia, Zhao-Hui Li, Yuan-Yuan Han, Xi-Xiang Xu, Xin-Long Zhao, Xia Wang, Yuan-Yuan Pan, Hong-Sen Li, and Qiang Li. Electrochemical Role of Transition Metals in Sn–Fe Alloy Revealed by Operando Magnetometry[J]. Chin. Phys. Lett., 2022, 39(2): 078202
[7] Zhekai Zhang, Jiyu Tian, Junfei Chen, Yugui He, Chaoyang Liu, Xinmiao Liang, and Jiwen Feng. Li Plating on Carbon Electrode Surface Probed by Low-Field Dynamic Nuclear Polarization $^{7}$Li NMR[J]. Chin. Phys. Lett., 2021, 38(12): 078202
[8] Panpan Li , Zhijie Feng , Tao Cheng , Yingchun Lyu, and Bingkun Guo. Effect of Fluorine Substitution on the Electrochemical Property and Structural Stability of a Lithium-Excess Cation Disordered Rock-Salt Cathode[J]. Chin. Phys. Lett., 2021, 38(8): 078202
[9] Jiachao Yang, Jian Zou, Chun Luo, Qiwen Ran, Xin Wang, Pengyu Chen, Chuan Hu, Xiaobin Niu, Haining Ji, and Liping Wang. FeSO$_{4}$ as a Novel Li-Ion Battery Cathode[J]. Chin. Phys. Lett., 2021, 38(6): 078202
[10] Changdong Qin, Le Wang, Pengfei Yan, Yingge Du, and Manling Sui. LiCoO$_{2}$ Epitaxial Film Enabling Precise Analysis of Interfacial Degradations[J]. Chin. Phys. Lett., 2021, 38(6): 078202
[11] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 078202
[12] Li-Wei Jiang, Ya-Xiang Lu, Yue-Sheng Wang, Li-Lu Liu, Xing-Guo Qi, Cheng-Long Zhao, Li-Quan Chen, Yong-Sheng Hu. A High-Temperature $\beta$-Phase NaMnO$_{2}$ Stabilized by Cu Doping and Its Na Storage Properties[J]. Chin. Phys. Lett., 2018, 35(4): 078202
[13] Rong-Xue Qiao, Ming-Jian Zhang, Yi-Dong Liu, Wen-Ju Ren, Yuan Lin, Feng Pan. A Novel Real-Time State-of-Health and State-of-Charge Co-Estimation Method for LiFePO$_{4}$ Battery[J]. Chin. Phys. Lett., 2016, 33(07): 078202
[14] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 078202
[15] LI Lin, MA Chao, YANG Huai-Xin, LI Jian-Qi. Splitting Process of Na-Birnessite Nanosheet via Transmission Electron Microscopy[J]. Chin. Phys. Lett., 2013, 30(8): 078202
Viewed
Full text


Abstract