CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Tilted Perpendicular Anisotropy-Induced Spin-Orbit Ratchet Effects |
Bin Chen1, Yuantu Long1, Yulin Nie1, Ziyu Ling1, Tianping Ma5, Ruixuan Zhang3, Yizheng Wu2, Yongming Luo1,4*, and Ningning Wang1* |
1School of Electronics and Information Engineering, Hangzhou Dianzi University, Hangzhou 310018, China 2State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 3Research Center for Intelligent Computing Platforms, Zhejiang Laboratory, Hangzhou 311121, China 4Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325038, China 5Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Bin Chen, Yuantu Long, Yulin Nie et al 2024 Chin. Phys. Lett. 41 078501 |
|
|
Abstract Using micromagnetic simulations, we demonstrate the tilted perpendicular anisotropy-induced spin-orbit ratchet effect. In spin-orbit torque (SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states (upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls (DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the leaky-integrate-fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for designs of further SOT-based devices.
|
|
Received: 17 April 2024
Published: 18 July 2024
|
|
PACS: |
85.75.-d
|
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
|
|
|
|
|
[1] | Souza J C B, Vizarim N P, Reichhardt C J O et al. 2021 Phys. Rev. B 104 054434 |
[2] | Migita K, Yamada K, and Nakatani Y 2020 Appl. Phys. Express 13 073003 |
[3] | Franken J H, Swagten H J M, and Koopmans B 2012 Nat. Nanotechnol. 7 499 |
[4] | Yamaguchi R, Yamada K, and Nakatani Y 2021 Jpn. J. Appl. Phys. 60 010904 |
[5] | Wang J L, Xia J, Zhang X C et al. 2020 Appl. Phys. Lett. 117 202401 |
[6] | Lavrijsen R, Lee J H, Fernández-Pacheco A et al. 2013 Nature 493 647 |
[7] | Liu L Q, Pai C F, Li Y et al. 2012 Science 336 555 |
[8] | Ramaswamy R, Lee J M, Cai K M, and Yang H 2018 Appl. Phys. Rev. 5 031107 |
[9] | Haazen P P J, Murè E, Franken J H et al. 2013 Nat. Mater. 12 299 |
[10] | Hao Q and Xiao G 2015 Phys. Rev. B 91 224413 |
[11] | Hao Q and Xiao G 2015 Phys. Rev. Appl. 3 034009 |
[12] | Torrejon J, Garcia-Sanchez F, Taniguchi T et al. 2015 Phys. Rev. B 91 214434 |
[13] | Huang Y H, Yang C Y, Cheng C W et al. 2022 Adv. Funct. Mater. 32 2111653 |
[14] | Zhu L 2023 Adv. Mater. 35 2300853 |
[15] | Liu L, Qin Q, Lin W N et al. 2019 Nat. Nanotechnol. 14 939 |
[16] | Luo Y M, Zhuang Y S, Feng Z S et al. 2022 Front. Phys. 17 53511 |
[17] | Luo Y M, Liang M F, Feng Z S et al. 2023 arXiv:2306.02616 [cond-mat.mtrl-sci] |
[18] | Liu L Q, Lee O J, Gudmundsen T J et al. 2012 Phys. Rev. Lett. 109 096602 |
[19] | Ryu K S, Thomas L, Yang S H et al. 2013 Nat. Nanotechnol. 8 527 |
[20] | Li S, Kang W, Huang Y Q et al. 2017 Nanotechnology 28 31LT01 |
[21] | Prezioso M, Merrikh-Bayat F, Hoskins B D et al. 2015 Nature 521 61 |
[22] | Lequeux S, Sampaio J, Cros V et al. 2016 Sci. Rep. 6 31510 |
[23] | Chen P Y, Peng X, and Yu S 2017 IEEE Int. Electron Devices Meeting (IEDM), 2–6 December 2017, San Francisco, CA, USA, p. 6.1.1 |
[24] | Liu J H, Xu T, Feng H M et al. 2022 Adv. Funct. Mater. 32 2107870 |
[25] | Song K M, Jeong J S, Pan B et al. 2020 Nat. Electron. 3 148 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|