CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Planar Hall Effect in the Charge-Density-Wave Bi$_{2}$Rh$_{3}$Se$_{2}$ |
Mingju Cai1, Zheng Chen2, Yang Yang2, Xiangde Zhu2, Haoxiang Sun3, Ankang Zhu4*, Xue Liu1, Yuyan Han2*, Wenshuai Gao1*, and Mingliang Tian2,5 |
1Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China 2Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China 3Stony Brook Institute at Anhui University, Anhui University, Hefei 230601, China 4School of Mathematics and Physics, Bengbu University, Bengbu 233030, China 5School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
|
|
Cite this article: |
Mingju Cai, Zheng Chen, Yang Yang et al 2024 Chin. Phys. Lett. 41 077303 |
|
|
Abstract We systematically investigate in-plane transport properties of ternary chalcogenide Bi$_{2}$Rh$_{3}$Se$_{2}$. Upon rotating the magnetic field within the plane of the sample, one can distinctly detect the presence of both planar Hall resistance and anisotropic longitudinal resistance, and the phenomena appeared are precisely described by the theoretical formulation of the planar Hall effect (PHE). In addition, anisotropic orbital magnetoresistance rather than topologically nontrivial chiral anomalies dominates the PHE in Bi$_{2}$Rh$_{3}$Se$_{2}$. The finding not only provides another platform for understanding the mechanism of PHE, but could also be beneficial for future planar Hall sensors based on two-dimensional materials.
|
|
Received: 09 April 2024
Published: 24 July 2024
|
|
PACS: |
73.43.Qt
|
(Magnetoresistance)
|
|
71.20.Be
|
(Transition metals and alloys)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
|
|
|
[1] | Keimer B and Moore J E 2017 Nat. Phys. 13 1045 |
[2] | Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666 |
[3] | Jiang K, Wu T, Yin J X et al. 2023 Natl. Sci. Rev. 10 nwac199 |
[4] | Jiao L, Howard S, Ran S et al. 2020 Nature 579 523 |
[5] | Gao W S, Zhu X D, Zheng F W et al. 2018 Nat. Commun. 9 3249 |
[6] | Zhu A K, Wang H H, Chen Z et al. 2023 Appl. Phys. Lett. 122 113101 |
[7] | Neupane M, Belopolski I, Hosen M M et al. 2016 Phys. Rev. B 93 201104 |
[8] | Bian G, Chang T R, Sankar R et al. 2016 Nat. Commun. 7 10556 |
[9] | Guan S Y, Chen P J, Chu M W et al. 2016 Sci. Adv. 2 e1600894 |
[10] | Gao W S, Zhu M C, Chen D et al. 2023 ACS Nano 17 4913 |
[11] | Zhu M C, Chen D, Zhu A K et al. 2022 Appl. Phys. Lett. 120 053102 |
[12] | Adam M L and Bala A A 2021 J. Phys.: Condens. Matter 33 225502 |
[13] | Gao T, Zhang Q, Li L et al. 2018 Adv. Opt. Mater. 6 1800058 |
[14] | Sakamoto T, Wakeshima M, Hinatsu Y et al. 2007 Phys. Rev. B 75 060503 |
[15] | Weihrich R, Matar S F, Eyert V et al. 2007 Prog. Solid State Chem. 35 309 |
[16] | Chen C Y, Chan C L, Mukherjee S et al. 2014 Solid State Commun. 177 42 |
[17] | Liu Z T, Zhang C, Wu Q Y et al. 2023 Sci. Chin. Phys. Mech. & Astron. 66 277411 |
[18] | Lin T, Shi L Y, Wang Z X et al. 2020 Phys. Rev. B 101 205112 |
[19] | Wang Y S, Chen B, Liu Z T et al. 2023 Phys. Rev. B 108 045118 |
[20] | Ikeda M, Zhang Z Y, Goto H et al. 2023 Inorg. Chem. 62 7453 |
[21] | Zhao Y F, Liu H W, Zhang C L et al. 2015 Phys. Rev. X 5 031037 |
[22] | Zhao Y F, Liu H W, Yan J Q et al. 2015 Phys. Rev. B 92 041104 |
[23] | Narayanan A, Watson M D, Blake S F et al. 2015 Phys. Rev. Lett. 114 117201 |
[24] | Parish M M and Littlewood P B 2003 Nature 426 162 |
[25] | Manyala N, Sidis Y, DiTusa J F et al. 2000 Nature 404 581 |
[26] | Kumar D and Lakhani A 2018 Phys. Status Solidi RRL 12 1800088 |
[27] | Zhang J K, Hu T J, Yan J J et al. 2017 Mater. Lett. 209 78 |
[28] | An L L, Zhu X D, Gao W S et al. 2019 Phys. Rev. B 99 045143 |
[29] | Zhong J Y, Zhuang J C, and Du Y 2023 Chin. Phys. B 32 047203 |
[30] | Zhong J Y, Yang M, Wang J F et al. 2024 ACS Nano 18 4343 |
[31] | Nandy S, Sharma G, Taraphder A et al. 2017 Phys. Rev. Lett. 119 176804 |
[32] | Shao J M and Yan L J 2023 J. Phys.: Condens. Matter 35 025401 |
[33] | Ai W, Chen F Y, Liu Z C et al. 2024 Nat. Commun. 15 1259 |
[34] | Ghosh S, Sinha D, Nandy S et al. 2020 Phys. Rev. B 102 121105 |
[35] | Wu M, Zheng G L, Chu W W et al. 2018 Phys. Rev. B 98 161110 |
[36] | Liu Y, Yang J Y, Chu W W et al. 2017 Appl. Phys. Lett. 111 033103 |
[37] | You Y R, Gong Y Y, Li H et al. 2019 Phys. Rev. B 100 134441 |
[38] | Ge J, Ma D, Liu Y Z et al. 2020 Natl. Sci. Rev. 7 1879 |
[39] | Wang H, Huang Y X, Liu H Y et al. 2024 Phys. Rev. Lett. 132 056301 |
[40] | Li L, Cao J, Cui C X et al. 2023 Phys. Rev. B 108 085120 |
[41] | Meng J C, Xue H X, Liu M R et al. 2020 J. Phys.: Condens. Matter 32 015702 |
[42] | Wang X R 2022 Chin. Phys. Lett. 39 027301 |
[43] | Wang P, Hou T, Tang F D et al. 2021 Chin. Phys. Lett. 38 017201 |
[44] | Chen F C, Luo X, Yan J et al. 2018 Phys. Rev. B 98 041114 |
[45] | Li Q X, Jin G J, Tang N N et al. 2023 Phys. Rev. B 108 235155 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|