CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Decoupling of Rattling Mode and Superconductivity in Filled-Skutterudite Ba$_{x}$Ir$_{4}$Sb$_{12}$ |
Hui Liu1,2,3, Tongxu Yu4, Zhihua Zhang1*, and Tianping Ying2,3* |
1School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China 4Suzhou Laboratory, Suzhou 215123, China
|
|
Cite this article: |
Hui Liu, Tongxu Yu, Zhihua Zhang et al 2024 Chin. Phys. Lett. 41 077401 |
|
|
Abstract The rattling mode, an anharmonic vibrational phonon, is widely recognized as a critical factor in the emergence of superconductivity in caged materials. Here, we present a counterexample in a filled-skutterudite superconductor Ba$_{x}$Ir$_{4}$Sb$_{12}$ ($x = 0.8$, 0.9, 1.0), synthesized via a high-pressure route. Transport measurements down to liquid $^{3}$He temperatures reveal a transition temperature ($T_{\rm c}$) of 1.2 K and an upper critical field ($H_{\rm c2}$) of 1.3 T. Unlike other superconductors with caged structures, the Ba$_{x}$Ir$_{4}X_{12}$ ($X = {\rm P}$, As, Sb) family exhibits a monotonic decreasing $T_{\rm c}$ with the enhancement of the rattling mode, as indicated by fitting the Bloch–Grüneisen formula. Theoretical analysis suggests that electron doping from Ba transforms the direct bandgap IrSb$_{3}$ into a metal, with the Fermi surface dominated by the hybridization of Ir 5$d$ and Sb 5$p$ orbitals. Our findings of decoupled rattling modes and superconductivity distinguish the Ba$_{x}$Ir$_{4}$Sb$_{12}$ family from other caged superconductors, warranting further exploration into the underlying mechanism.
|
|
Received: 09 May 2024
Published: 08 July 2024
|
|
|
|
|
|
[1] | Xiong C, Pei C Y, Wang Q, Wu J F, Zhao Y, Jiang Y Y, Li C H, Cao W Z, Yu N, Zhang L L, and Qi Y P 2024 Phys. Rev. B 109 075202 |
[2] | Bhattacharyya A, Adroja D T, Jana A K, Panda K, Ferreira P P, Zhao Y, Ying T, Hosono H, Dorini T T, Eleno L T F, Biswas P K, Stenning G, Tripathi R, and Qi Y 2024 J. Alloys Compd. 978 173374 |
[3] | Hong A and Ma L 2021 Appl. Phys. Lett. 118 143903 |
[4] | Lingannan G, Joseph B, Sundaramoorthy M, Kuo C N, Lue C S, and Arumugam S 2022 J. Phys.: Condens. Matter 34 245601 |
[5] | Sluchanko N, Bogach A, Bolotina N, Glushkov V, Demishev S, Dudka A, Krasnorussky V, Khrykina O, Krasikov K, Mironov V, Filipov V B, and Shitsevalova N 2018 Phys. Rev. B 97 035150 |
[6] | Pei C Y, Ying T P, Zhao Y, Gao L L, Cao W Z, Li C H, Hosono H, and Qi Y P 2022 Matter Radiat. Extremes 7 038404 |
[7] | Hiroi Z, Yonezawa S, Muramatsu T, Yamaura J I, and Muraoka Y 2005 J. Phys. Soc. Jpn. 74 1255 |
[8] | Yamaura J I, Yonezawa S, Muraoka Y, and Hiroi Z 2006 J. Solid State Chem. 179 336 |
[9] | Nagao Y, Yamaura J I, Ogusu H, Okamoto Y, and Hiroi Z 2009 J. Phys. Soc. Jpn. 78 064702 |
[10] | Lee C C, Lee W L, Lin J Y, Tsuei C C, Lin J G, and Chou F C 2011 Phys. Rev. B 83 104503 |
[11] | Hiroi Z, Yonezawa S, Nagao Y, and Yamaura J 2007 Phys. Rev. B 76 014523 |
[12] | Hattori K and Tsunetsugu H 2010 Phys. Rev. B 81 134503 |
[13] | Oshiba K and Hotta T 2011 J. Phys. Soc. Jpn. 80 094712 |
[14] | Hattori K and Tsunetsugu H 2009 J. Phys. Soc. Jpn. 78 013603 |
[15] | Bochenek L, Wawryk R, Henkie Z, and Cichorek T 2012 Phys. Rev. B 86 060511 |
[16] | Uchiumi T, Shirotani I, Sekine C, Todo S, Yagi T, Nakazawa Y, and Kanoda K 1999 J. Phys. Chem. Solids 60 689 |
[17] | Tütüncü H M, Karaca E, and Srivastava G P 2017 Phys. Rev. B 95 214514 |
[18] | Klotz J, Götze K, Lorenz V, Prots Y, Rosner H, Harima H, Bochenek L, Henkie Z, Cichorek T, Sheikin I, and Wosnitza J 2019 Phys. Rev. B 100 205106 |
[19] | Winiarski M J, Wiendlocha B, Sternik M, Wiśniewski P, O'Brien J R, Kaczorowski D, and Klimczuk T 2016 Phys. Rev. B 93 134507 |
[20] | Koza M M, Leithe-Jasper A, Sischka E, Schnelle W, Borrmann H, Mutka H, and Grin Y 2014 Phys. Chem. Chem. Phys. 16 27119 |
[21] | Hiroi Z, Yamaura J I, and Hattori K 2012 J. Phys. Soc. Jpn. 81 011012 |
[22] | Hiroi Z, Onosaka A, Okamoto Y, Yamaura J I, and Harima H 2012 J. Phys. Soc. Jpn. 81 124707 |
[23] | Nemoto Y, Yanagisawa T, Yasumoto Y, Kobayashi H, Yamaguchi A, Tsuduku S, Goto T, Takeda N, Ochiai A, Sugawara H, Sato H, and Kitazawa H 2008 J. Phys. Soc. Jpn. 77 153 |
[24] | Qi Y P, Lei H C, Guo J G, Shi W J, Yan B H, Felser C, and Hosono H 2017 J. Am. Chem. Soc. 139 8106 |
[25] | Pei C Y, Ying T P, Zhang Q H, Wu X X, Yu T X, Zhao Y, Gao L L, Li C H, Cao W Z, Zhang Q, Schnyder A P, Gu L, Chen X L, Hosono H, and Qi Y P 2022 J. Am. Chem. Soc. 144 6208 |
[26] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[27] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[28] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[29] | Ernzerhof M and Scuseria G E 1999 J. Chem. Phys. 110 5029 |
[30] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 |
[31] | Chen X, Deng J, Jin S F, Ying T P, Fei G, Ren H F, Yang Y F, Ma K, Yang M Z, Wang J J, Li Y C, Chen X, Liu X B, Du S X, Guo J G, and Chen X L 2023 J. Am. Chem. Soc. 145 17435 |
[32] | Chen X, Zhang X, Xiao X, Wang Z J, and Zhao J Z 2023 Angew. Chem. Int. Ed. 62 e202216010 |
[33] | Ying T P, Wang M X, Wu X X, Zhao Z Y, Zhang Z Z, Song B Q, Li Y C, Lei B, Li Q, Yu Y, Cheng E J, An Z H, Zhang Y, Jia X Y, Yang W, Chen X H, and Li S Y 2018 Phys. Rev. Lett. 121 207003 |
[34] | Ying T P, Chen X L, Wang G, Jin S F, Zhou T T, Lai X F, Zhang H, and Wang W Y 2012 Sci. Rep. 2 426 |
[35] | Chen X, Zhan X H, Wang X J, Deng J, Liu X B, Chen X, Guo J G, and Chen X L 2021 Chin. Phys. Lett. 38 057402 |
[36] | Askerzade I N 2006 Phys.-Usp. 49 1003 |
[37] | Stephen M J 1965 Phys. Rev. 139 A197 |
[38] | Myles C W, Biswas K, and Nenghabi E 2007 Physica B 401–402 695 |
[39] | Cao D, Bridges F, Chesler P, Bushart S, Bauer E D, and Maple M B 2004 Phys. Rev. B 70 094109 |
[40] | Hinokihara T and Miyake K 2012 J. Phys. Soc. Jpn. 81 084603 |
[41] | Shirotani I, Uchiumi T, Ohno K, Sekine C, Nakazawa Y, Kanoda K, Todo S, and Yagi T 1997 Phys. Rev. B 56 7866 |
[42] | Shirotani I, Ohno K, Sekine C, Yagi T, Kawakami T, Nakanishi T, Takahashi H, Tang J, Matsushita A, and Matsumoto T 2000 Phys. Rev. B 281–282 1021 |
[43] | Yuan H, Vandervelde D, Salamon M, Badica P, and Togano K 2006 AIP Conf. Proc. 850 633 |
[44] | Smidman M, Salamon M B, Yuan H Q, and Agterberg D F 2017 Rep. Prog. Phys. 80 036501 |
[45] | Muranaka T and Akimitsu J 2016 Chem. Sci. J. 7 1000135 |
[46] | Wu J Z, Akagi K, Xu J T, Shimotani H, Huynh K K, and Tanigaki K 2016 Phys. Rev. B 93 094303 |
[47] | Wu J Z, Xu J T, and Tanigaki K 2024 J. Phys. Chem. Solids 184 111709 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|