CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Normal and Superconducting Properties of La$_3$Ni$_2$O$_7$ |
Meng Wang1, Hai-Hu Wen2, Tao Wu3, Dao-Xin Yao1, and Tao Xiang4,5 |
1Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China 2National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 3Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China 4Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 5School of Physics, University of Chinese Academy of Sciences, Beijing 100190, China
|
|
Cite this article: |
Meng Wang, Hai-Hu Wen, Tao Wu et al 2024 Chin. Phys. Lett. 41 077402 |
|
|
Abstract This review provides a comprehensive overview of current research on the structural, electronic, and magnetic characteristics of the recently discovered high-temperature superconductor La$_3$Ni$_2$O$_7$ under high pressures. We present the experimental results for synthesizing and characterizing this material, derived from measurements of transport, thermodynamics, and various spectroscopic techniques, and discuss their physical implications. We also explore theoretical models proposed to describe the electronic structures and superconducting pairing symmetry in La$_3$Ni$_2$O$_7$, highlighting the intricate interplay between electronic correlations and magnetic interactions. Despite these advances, challenges remain in growing high-quality samples free of extrinsic phases and oxygen deficiencies and in developing reliable measurement tools for determining diamagnetism and other physical quantities under high pressures. Further investigations in these areas are essential to deepening our understanding of the physical properties of La$_3$Ni$_2$O$_7$ and unlocking its superconducting pairing mechanism.
|
|
Received: 06 June 2024
Review
Published: 13 July 2024
|
|
PACS: |
75.10.Jm
|
(Quantized spin models, including quantum spin frustration)
|
|
75.10.Kt
|
(Quantum spin liquids, valence bond phases and related phenomena)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
|
|
|
[1] | Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493 |
[2] | Zhang Y, Su D, Huang Y, Shan Z, Sun H, Huo M, Ye K, Zhang J, Yang Z, Xu Y, Su Y, Li R, Smidman M, Wang M, Jiao L, and Yuan H 2024 Nat. Phys. (accepted) |
[3] | Hou J, Yang P T, Liu Z Y, Li J Y, Shan P F, Ma L, Wang G, Wang N N, Guo H Z, Sun J P, Uwatoko Y, Wang M, Zhang G M, Wang B S, and Cheng J G 2023 Chin. Phys. Lett. 40 117302 |
[4] | Zhou Y Z, Guo J, Cai S, Sun H L, Wang P Y, Zhao J Y, Han J Y, Chen X T, Chen Y J, Wu Q, Ding Y, Xiang T, Mao H k, and Sun L L 2023 arXiv:2311.12361 [cond-mat.supr-con] |
[5] | Li J Y, Ma P Y, Zhang H Y, Huang X, Huang C X, Huo M W, Hu D Y, Dong Z X, He C L, Liao J H, Chen X, Xie T, Sun H L, and Wang M 2024 arXiv:2404.11369 [cond-mat.supr-con] |
[6] | Wang G, Wang N N, Wang Y X, Shi L F, Shen X L, Hou J, Ma H M, Yang P T, Liu Z Y, Zhang H, Dong X L, Sun J P, Wang B S, Jiang K, Hu J P, Uwatoko Y, and Cheng J G 2023 arXiv:2311.08212 [cond-mat.supr-con], and private communications with Cheng J. |
[7] | Wang G, Wang N N, Shen X L, Hou J, Ma L, Shi L F, Ren Z A, Gu Y D, Ma H M, Yang P T, Liu Z Y, Guo H Z, Sun J P, Zhang G M, Calder S, Yan J Q, Wang B S, Uwatoko Y, and Cheng J G 2024 Phys. Rev. X 14 011040 |
[8] | Wang L, Li Y, Xie S Y, Liu F, Sun H, Huang C, Gao Y, Nakagawa T, Fu B, Dong B, Cao Z, Yu R, Kawaguchi S I, Kadobayashi H, Wang M, Jin C, Mao H K, and Liu H 2024 J. Am. Chem. Soc. 146 7506 |
[9] | Zhang M, Pei C, Wang Q, Zhao Y, Li C, Cao W, Zhu S, Wu J, and Qi Y 2024 J. Mater. Sci. & Technol. 185 147 |
[10] | Sakakibara H, Ochi M, Nagata H, Ueki Y, Sakurai H, Matsumoto R, Terashima K, Hirose K, Ohta H, Kato M, Takano Y, and Kuroki K 2024 Phys. Rev. B 109 144511 |
[11] | Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K, and Zhao Z 2022 Nature 602 431 |
[12] | Liu Z, Sun H, Huo M, Ma X, Ji Y, Yi E, Li L, Liu H, Yu J, Zhang Z, Chen Z, Liang F, Dong H, Guo H, Zhong D, Shen B, Li S, and Wang M 2023 Sci. Chin. Phys. Mech. & Astron. 66 217411 |
[13] | Khasanov R, Hicken T J, Gawryluk D J, Sorel L P, Bötzel S, Lechermann F, Eremin I M, Luetkens H, and Guguchia Z 2024 arXiv:2402.10485 [cond-mat.supr-con] |
[14] | Chen X Y, Choi J, Jiang Z C, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Huang X, Sun H L, Shen D W, Wang M, Hu J P, Lu Y, Zhou K J, and Feng D L 2024 arXiv:2401.12657 [cond-mat.supr-con] |
[15] | Chen K W, Liu X Q, Jiao J C, Zou M Y, Jiang C Y, Li X, Luo Y X, Wu Q, Zhang N Y, Guo Y F, and Shu L 2024 Phys. Rev. Lett. 132 256503 |
[16] | Dan Z, Zhou Y B, Huo M W, Wang Y, Nie L P, Wang M, Wu T, and Chen X H 2024 arXiv:2402.03952 [cond-mat.supr-con] |
[17] | Luo Z, Hu X, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001 |
[18] | Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510 |
[19] | Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505 |
[20] | Gu Y H, Le C C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con] |
[21] | Wú W, Luo Z, Yao D X, and Wang M 2024 Sci. Chin. Phys. Mech. & Astron. 67 117402 |
[22] | Luo Z, Lv B, Wang M, Wú W, and Yao D X 2023 arXiv:2308.16564 [cond-mat.supr-con] |
[23] | Lu C, Pan Z, Yang F, and Wu C 2024 Phys. Rev. Lett. 132 146002 |
[24] | Qu X Z, Qu D W, Chen J, Wu C, Yang F, Li W, and Su G 2024 Phys. Rev. Lett. 132 036502 |
[25] | Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, and Xiang T 2023 arXiv:2312.17064 [cond-mat.supr-con] |
[26] | Ouyang Z, Wang J M, Wang J X, He R Q, Huang L, and Lu Z Y 2023 arXiv:2311.10066 [cond-mat.supr-con] |
[27] | Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002 |
[28] | Jiang K, Wang Z, and Zhang F C 2024 Chin. Phys. Lett. 41 017402 |
[29] | Liu H Q, Xia C L, Zhou S J, and Chen H H 2023 arXiv:2311.07316 [cond-mat.supr-con] |
[30] | Yang Y F, Zhang G M, and Zhang F C 2023 arXiv:2308.01176 [cond-mat.supr-con] |
[31] | Shen Y, Qin M, and Zhang G M 2023 Chin. Phys. Lett. 40 127401 |
[32] | Wold A, Post B, and Banks E 1957 J. Am. Chem. Soc. 79 4911 |
[33] | Rabenau A and Eckerlin P 1958 Acta Crystallogr. 11 304 |
[34] | Shivakumara C, Hegde M S, Prakash A S, Khadar A M A, Subbanna G N, and Lalla N P 2003 Solid State Sci. 5 351 |
[35] | Wold A and Arnott R J 1959 J. Phys. Chem. Solids 9 176 |
[36] | Brisi C, Vallino M, and Abbattista F 1981 J. Less-Common Met. 79 215 |
[37] | Drennan J, Tavares C P, and Steele B 1982 Phys. Today 35 111 |
[38] | Ram R A M, Ganapathi L, Ganguly P, and Rao C N R 1986 J. Solid State Chem. 63 139 |
[39] | Sreedhar K, McElfresh M, Perry D, Kim D, Metcalf P, and Honig J M 1994 J. Solid State Chem. 110 208 |
[40] | Zhang Z, Greenblatt M, and Goodenough J B 1994 J. Solid State Chem. 108 402 |
[41] | Taniguchi S, Nishikawa T, Yasui Y, Kobayashi Y, Takeda J, Shamoto S i, and Sato M 1995 J. Phys. Soc. Jpn. 64 1644 |
[42] | Carvalho M D, Costa F M A, da Silva Pereira I, Wattiaux A, Bassat J M, Grenier J C, and Pouchard M 1997 J. Mater. Chem. 7 2107 |
[43] | Zhang J, Zheng H, Chen Y S, Ren Y, Yonemura M, Huq A, and Mitchell J F 2020 Phys. Rev. Mater. 4 083402 |
[44] | Puphal P, Reiss P, Enderlein N, Wu Y M, Khaliullin G, Sundaramurthy V, Priessnitz T, Knauft M, Richter L, Isobe M, van Aken P A, Takagi H, Keimer B, Suyolcu Y E, Wehinger B, Hansmann P, and Hepting M 2023 arXiv:2312.07341 [cond-mat.supr-con] |
[45] | Chen X, Zhang J, Thind A S, Sharma S, LaBollita H, Peterson G, Zheng H, Phelan D P, Botana A S, Klie R F, and Mitchell J F 2024 J. Am. Chem. Soc. 146 3640 |
[46] | Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Gu L, Lu Y, Wang M, Wang Y Y, and Chen Z 2024 Nature 630 847 |
[47] | Ling C D, Argyriou D N, Wu G Q, and Neumeier J J 2000 J. Solid State Chem. 152 517 |
[48] | Xie T, Huo M W, Ni X S, Shen F R, Huang X, Sun H L, Walker H C, Adroja D, Yu D H, Shen B, He L H, Cao K, and Wang M 2024 arXiv:2401.12635 [cond-mat.supr-con] |
[49] | Hosoya T, Igawa K, Takeuchi Y, Yoshida K, Uryu T, Hirabayashi H, and Takahashi H 2008 J. Phys.: Conf. Ser. 121 052013 |
[50] | Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2024 arXiv:2307.02950 [cond-mat.supr-con] |
[51] | Kobayashi Y, Taniguchi S, Kasai M, Sato M, Nishioka T, and Kontani M 1996 J. Phys. Soc. Jpn. 65 3978 |
[52] | Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128 |
[53] | Nakata M, Ogura D, Usui H, and Kuroki K 2017 Phys. Rev. B 95 214509 |
[54] | Yang J, Sun H, Hu X, Xie Y, Miao T, Luo H, Chen H, Liang B, Zhu W, Qu G, Chen C Q, Huo M, Huang Y, Zhang S, Zhang F, Yang F, Wang Z, Peng Q, Mao H, Liu G, Xu Z, Qian T, Yao D X, Wang M, Zhao L, and Zhou X J 2024 Nat. Commun. 15 4373 |
[55] | Zhu Y H, Zhang E K, Pan B Y, Chen X, Peng D, Chen L X, Ren H F, Liu F Y, Li N N, Xing Z F, Han J Y, Wang J J, Jia D H, Wo H L, Gu Y Q, Gu Y M, Ji L, Wang W B, Gou H Y, Shen Y, Ying T P, Chen X L, Yang W G, Zheng C L, Zeng Q S, Guo J g, and Zhao J 2023 arXiv:2311.07353 [cond-mat.supr-con] |
[56] | Abadi S N, Xu K J, Lomeli E G, Puphal P, Isobe M, Zhong Y, Fedorov A V, Mo S K, Hashimoto M, Lu D H, Moritz B, Keimer B, Devereaux T P, Hepting M, and Shen Z X 2024 arXiv:2402.07143 [cond-mat.supr-con] |
[57] | Li Q, Zhang Y J, Xiang Z N, Zhang Y, Zhu X, and Wen H H 2024 Chin. Phys. Lett. 41 017401 |
[58] | Zhang M X, Pei C Y, Du X, Hu W X, Cao Y T, Wang Q, Wu J F, Li Y D, Liu H Y, Wen C, Zhao Y, Li C H, Cao W Z, Zhu S H, Zhang Q, Yu N, Cheng P H, Zhang L L, Li Z W, Zhao J K, Chen Y L, Guo H J, Wu C J, Yang F, Yan S C, Yang L X, and Qi Y P 2023 arXiv:2311.07423 [cond-mat.supr-con] |
[59] | Li H, Zhou X, Nummy T, Zhang J, Pardo V, Pickett W E, Mitchell J F, and Dessau D S 2017 Nat. Commun. 8 704 |
[60] | Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418 |
[61] | Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, and Lee W S 2020 Nat. Mater. 19 381 |
[62] | Goodge B H, Li D F, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, and Kourkoutis L F 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118 |
[63] | Seo D K, Liang W, Whangbo M H, Zhang Z, and Greenblatt M 1996 Inorg. Chem. 35 6396 |
[64] | Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501 |
[65] | Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, and Mukuda H 2024 J. Phys. Soc. Jpn. 93 053702 |
[66] | Fukamachi T, Kobayashi Y, Miyashita T, and Sato M 2001 J. Phys. Chem. Solids 62 195 |
[67] | Fukamachi T, Oda K, Kobayashi Y, Miyashita T, and Sato M 2001 J. Phys. Soc. Jpn. 70 2757 |
[68] | Zhang J, Phelan D, Botana A S, Chen Y S, Zheng H, Krogstad M, Wang S G, Qiu Y, Rodriguez-Rivera J A, Osborn R, Rosenkranz S, Norman M R, and Mitchell J F 2020 Nat. Commun. 11 6003 |
[69] | Li Y D, Cao Y T, Liu L Y, Peng P, Lin H, Pei C Y, Zhang M X, Wu H, Du X, Zhao W X, Zhai K Y, Zhao J K, Lin M L, Tan P H, Qi Y P, Li G, Guo H J, Yang L Y, and Yang L X 2024 arXiv:2403.05012 [cond-mat.supr-con] |
[70] | Demsar J, Biljaković K, and Mihailovic D 1999 Phys. Rev. Lett. 83 800 |
[71] | Yusupov R V, Mertelj T, Chu J H, Fisher I R, and Mihailovic D 2008 Phys. Rev. Lett. 101 246402 |
[72] | Li R S, Yue L, Wu Q, Xu S X, Liu Q M, Wang Z X, Hu T C, Zhou X Y, Shi L Y, Zhang S J, Wu D, Dong T, and Wang N L 2022 Phys. Rev. B 105 115102 |
[73] | Borovšak M, Stojchevska L, Sutar P, Mertelj T, and Mihailovic D 2016 Phys. Rev. B 93 125123 |
[74] | Rothwarf A and Taylor B N 1967 Phys. Rev. Lett. 19 27 |
[75] | Wu G, Neumeier J J, and Hundley M F 2001 Phys. Rev. B 63 245120 |
[76] | Meng Y H, Yang Y, Sun H L, Zhang S S, Luo J L, Wang M, Hong F, Wang X B, and Yu X H 2024 arXiv:2404.19678 [cond-mat.supr-con] |
[77] | Freeman P G, Boothroyd A T, Prabhakaran D, Frost C D, Enderle M, and Hiess A 2005 Phys. Rev. B 71 174412 |
[78] | Cao Y and Yang Y F 2024 Phys. Rev. B 109 L081105 |
[79] | Lechermann F, Gondolf J, Bötzel S, and Eremin I M 2023 Phys. Rev. B 108 L201121 |
[80] | Wang Y, Jiang K, Wang Z, Zhang F C, and Hu J 2024 arXiv:2401.15097 [cond-mat.supr-con] |
[81] | Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511 |
[82] | Yang H, Oh H, and Zhang Y H 2024 arXiv:2309.15095 [cond-mat.str-el] |
[83] | Xiang T and Wheatley J M 1996 Phys. Rev. Lett. 77 4632 |
[84] | Xiang T, Panagopoulos C, and Cooper J R 1998 Int. J. Mod. Phys. B 12 1007 |
[85] | Xue J R and Wang F 2024 Chin. Phys. Lett. 41 057403 |
[86] | Zhan J, Gu Y H, Wu X X, and Hu J P 2024 arXiv:2404.03638 [cond-mat.supr-con] |
[87] | Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 Phys. Rev. B 108 165141 |
[88] | Wu S Q, Yang Z H, Ma X, Dai J H, Shi M, Yuan H Q, Lin H Q, and Cao C 2024 arXiv:2403.11713 [cond-mat.supr-con] |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|