Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 077102    DOI: 10.1088/0256-307X/41/7/077102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Valence Bands Convergence in p-Type CoSb$_{3}$ through Electronegative Fluorine Filling
Xiege Huang1†, Jialiang Li2†, Haoqin Ma1, Changlong Li1, Tianle Liu1, Bo Duan1*, Pengcheng Zhai1,3, and Guodong Li1,3*
1Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
2School of Civil Engineering & Architecture, Wuhan Polytechnic University, Wuhan 430023, China
3State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
Cite this article:   
Xiege Huang, Jialiang Li, Haoqin Ma et al  2024 Chin. Phys. Lett. 41 077102
Download: PDF(2456KB)   PDF(mobile)(2556KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Band convergence is considered to be a strategy with clear benefits for thermoelectric performance, generally favoring the co-optimization of conductivity and Seebeck coefficients, and the conventional means include elemental filling to regulate the band. However, the influence of the most electronegative fluorine on the CoSb$_{3}$ band remains unclear. We carry out density-functional-theory calculations and show that the valence band maximum gradually shifts downward with the increase of fluorine filling, lastly the valence band maximum converges to the highly degenerated secondary valence bands in fluorine-filled skutterudites. The effective degeneracy near the secondary valence band promotes more valleys to participate in electric transport, leading to a carrier mobility of more than the threefold and nearly twofold effective mass for F$_{0.1}$Co$_{4}$Sb$_{12}$ compared to Co$_{4}$Sb$_{12}$. This work provides a new and promising route to boost the thermoelectric properties of p-type skutterudites.
Received: 15 April 2024      Published: 24 July 2024
PACS:  31.15.A--  
  71.20.--b  
  73.20.At (Surface states, band structure, electron density of states)  
  61.82.Fk (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/077102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/077102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xiege Huang
Jialiang Li
Haoqin Ma
Changlong Li
Tianle Liu
Bo Duan
Pengcheng Zhai
and Guodong Li
[1] Xie H Y, Zhao L D, and Kanatzidis M G 2024 Interdiscip. Mater. 3 5
[2] Yang Y M, Wang X Z, and Zhang W J 2012 Acta Mech. Sin. 28 1644
[3] Yang H J, Wu L Q, Feng X B, Wang H T, Huang X G, Duan B, Li G D, Zhai P C, and Zhang Q J 2024 Small 20 2310692
[4] Pei Y, Shi X, LaLonde A, Wang H, Chen L, and Snyder G J 2011 Nature 473 66
[5] He J and Tritt T M 2017 Science 357 eaak9997
[6] Zhao W, Liu Z, Sun Z, Zhang Q, Wei P, Mu X, Zhou H, Li C, Ma S, He D, Ji P, Zhu W, Nie X, Su X, Tang X, Shen B, Dong X, Yang J, Liu Y, and Shi J 2017 Nature 549 247
[7] Zhao W, Liu Z, Wei P, Zhang Q, Zhu W, Su X, Tang X, Yang J, Liu Y, Shi J, Chao Y, Lin S, and Pei Y 2017 Nat. Nanotechnol. 12 55
[8] Xie L, Yin L, Yu Y, Peng G, Song S, Ying P, Cai S, Sun Y, Shi W, Wu H, Qu N, Guo F, Cai W, Wu H, Zhang Q, Nielsch K, Ren Z, Liu Z, and Sui J 2023 Science 382 921
[9] Qin Y, Qin B, Hong T, Zhang X, Wang D, Liu D, Wang Z Y, Su L, Wang S, Gao X, Ge Z H, and Zhao L D 2024 Science 383 1204
[10] Slack G A and Tsoukala V G 1994 J. Appl. Phys. 76 1665
[11] Li X Y, Chen L D, Fan J F, Zhang W B, Kawahara T, and Hirai T 2005 J. Appl. Phys. 98 083702
[12] Zhai P C, Zhao W Y, Li Y, Liu L S, Tang X F, Zhang Q J, and Niino M 2006 Appl. Phys. Lett. 89 052111
[13] Shi X, Yang J, Salvador J R, Chi M, Cho J Y, Wang H, Bai S, Yang J, Zhang W, and Chen L 2011 J. Am. Chem. Soc. 133 7837
[14] Tang Y L, Gibbs Z M, Agapito L A, Li G D, Kim H S, Nardelli Marco B, Curtarolo S, and Snyder G J 2015 Nat. Mater. 14 1223
[15] Li H, Tang X, Zhang Q, and Uher C 2009 Appl. Phys. Lett. 94 102114
[16] Dahal T, Jie Q, Joshi G, Chen S, Guo C, Lan Y, and Ren Z 2014 Acta Mater. 75 316
[17] Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, and Eibl O 2014 Acta Mater. 63 30
[18] Ortiz B R, Crawford C M, McKinney R W, Parilla P A, and Toberer E S 2016 J. Mater. Chem. A 4 8444
[19] Duan B, Yang J, Salvador J R, He Y, Zhao B, Wang S, Wei P, Ohuchi F S, Zhang W, Hermann R P, Gourdon O, Mao S X, Cheng Y, Wang C, Liu J, Zhai P, Tang X, Zhang Q, and Yang J 2016 Energy & Environ. Sci. 9 2090
[20] Hu C, Ni P, Zhan L, Zhao H, He J, Tritt T M, Huang J, and Sumpter B G 2018 Rare Met. 37 316
[21] Zeier W G, Zevalkink A, Gibbs Z M, Hautier G, Kanatzidis M G, and Snyder G J 2016 Angew. Chem. Int. Ed. Engl. 55 6826
[22] Xiao Y and Zhao L D 2020 Science 367 1196
[23] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[24] Blöchl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Medeiros P V C, Stafström S, and Björk J 2014 Phys. Rev. B 89 041407
[28] Xiao C, Li J, Duan B, Yang H, Wang H, Zhou L, Li G, and Zhai P 2022 Ceram. Int. 48 4270
[29] Li X, Xu B, Zhang L, Duan F, Yan X, Yang J, and Tian Y 2014 J. Alloys Compd. 615 177
[30] Li J, Zhang X, Ma H, Duan B, Li G, Yang J, Wang H, Yang H, Zhou L, and Zhai P 2022 J. Materiomics 8 88
[31] Singh D J and Pickett W E 1994 Phys. Rev. B 50 11235
[32] Sofo J O and Mahan G D 1998 Phys. Rev. B 58 15620
[33] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J, and Meng J 2007 Phys. Rev. B 76 054115 [Publisher's Note: Phys. Rev. B 76 059904]
[34] Bannikov V V, Shein I R, and Ivanovskii A L 2007 Phys. Status Solidi RRL 1 89
Viewed
Full text


Abstract