Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 077103    DOI: 10.1088/0256-307X/41/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Universal Machine Learning Kohn–Sham Hamiltonian for Materials
Yang Zhong1,2, Hongyu Yu1,2, Jihui Yang1,2, Xingyu Guo1,2, Hongjun Xiang1,2*, and Xingao Gong1,2
1Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
2Shanghai Qi Zhi Institute, Shanghai 200030, China
Cite this article:   
Yang Zhong, Hongyu Yu, Jihui Yang et al  2024 Chin. Phys. Lett. 41 077103
Download: PDF(10170KB)   PDF(mobile)(21065KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract While density functional theory (DFT) serves as a prevalent computational approach in electronic structure calculations, its computational demands and scalability limitations persist. Recently, leveraging neural networks to parameterize the Kohn–Sham DFT Hamiltonian has emerged as a promising avenue for accelerating electronic structure computations. Despite advancements, challenges such as the necessity for computing extensive DFT training data to explore each new system and the complexity of establishing accurate machine learning models for multi-elemental materials still exist. Addressing these hurdles, this study introduces a universal electronic Hamiltonian model trained on Hamiltonian matrices obtained from first-principles DFT calculations of nearly all crystal structures on the Materials Project. We demonstrate its generality in predicting electronic structures across the whole periodic table, including complex multi-elemental systems, solid-state electrolytes, Moiré twisted bilayer heterostructure, and metal-organic frameworks. Moreover, we utilize the universal model to conduct high-throughput calculations of electronic structures for crystals in GNoME datasets, identifying 3940 crystals with direct band gaps and 5109 crystals with flat bands. By offering a reliable efficient framework for computing electronic properties, this universal Hamiltonian model lays the groundwork for advancements in diverse fields, such as easily providing a huge data set of electronic structures and also making the materials design across the whole periodic table possible.
Received: 04 June 2024      Express Letter Published: 15 June 2024
PACS:  71.15.-m (Methods of electronic structure calculations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/077103       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/077103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yang Zhong
Hongyu Yu
Jihui Yang
Xingyu Guo
Hongjun Xiang
and Xingao Gong
[1] Marzari N, Ferretti A, and Wolverton C 2021 Nat. Mater. 20 736
[2] McCardle K 2023 Nat. Comput. Sci. 3 915
[3] Chen Z X, Li W Q, Sabuj M A et al. 2021 Nat. Commun. 12 5889
[4] Dzade N Y 2021 Sci. Rep. 11 4755
[5] Reidy K, Varnavides G, Thomsen J D et al. 2021 Nat. Commun. 12 1290
[6] Pederson R, Kalita B, and Burke K 2022 Nat. Rev. Phys. 4 357
[7] Schleder G R, Padilha A C M, Acosta C M, Costa M, and Fazzio A 2019 J. Phys.: Mater. 2 032001
[8] Makkar P and Ghosh N N 2021 RSC Adv. 11 27897
[9] Jones R O 2015 Rev. Mod. Phys. 87 897
[10] Hegde G and Bowen R C 2017 Sci. Rep. 7 42669
[11] Li H C, Collins C, Tanha M, Gordon G J, and Yaron D J 2018 J. Chem. Theory Comput. 14 5764
[12] Schütt K T, Gastegger M, Tkatchenko A, Müller K R, and Maurer R J 2019 Nat. Commun. 10 5024
[13] Gastegger M, McSloy A, Luya M, Schütt K T, and Maurer R J 2020 J. Chem. Phys. 153 044123
[14] Unke O T, Bogojeski M, Gastegger M et al. 2021 arXiv:2106.02347 [physics.chem-ph]
[15] Wang Z F, Ye S Z, Wang H et al. 2021 npj Comput. Mater. 7 11
[16] Westermayr J and Maurer R J 2021 Chem. Sci. 12 10755
[17] Li H, Wang Z, Zou N L et al. 2022 Nat. Comput. Sci. 2 367
[18] Nigam J, Willatt M J, and Ceriotti M 2022 J. Chem. Phys. 156 014115
[19] Schattauer C, Todorović M, Ghosh K, Rinke P, and Libisch F 2022 npj Comput. Mater. 8 116
[20] Zhang L W, Onat B, Dusson G et al. 2022 npj Comput. Mater. 8 158
[21] Gong X X, Li H, Zou N L et al. 2023 Nat. Commun. 14 2848
[22] Zhong Y, Yu H, Su M, Gong X, and Xiang H 2023 npj Comput. Mater. 9 182
[23] Ye Y F, Wang Q, Lu J, Liu C T, and Yang Y 2016 Mater. Today 19 349
[24] Feng R, Zhang C, Gao M C et al. 2021 Nat. Commun. 12 4329
[25] George E P, Raabe D, and Ritchie R O 2019 Nat. Rev. Mater. 4 515
[26] Zhang R Z and Reece M J 2019 J. Mater. Chem. A 7 22148
[27] Oses C, Toher C, and Curtarolo S 2020 Nat. Rev. Mater. 5 295
[28] Zhao P, Xiao C, and Yao W 2021 npj 2D Mater. Appl. 5 38
[29] Chen C 2022 Nat. Comput. Sci. 2 703
[30] Chen C and Ong S P 2022 Nat. Comput. Sci. 2 718
[31] Takamoto S, Shinagawa C, Motoki D et al. 2022 Nat. Commun. 13 2991
[32] Deng B W, Zhong P C, Jun K et al. 2023 Nat. Mach. Intell. 5 1031
[33] Batatia I, Benner P, Chiang Y et al. 2023 arXiv:2401.00096 [physics.chem-ph]
[34] Jain A, Ong S P, Hautier G et al. 2013 APL Mater. 1 011002
[35] Jain A, Montoya J, Dwaraknath S et al. 2018 Handbook of Materials Modeling (Berlin: Springer) p 1
[36] Wang H, Zhang L F, Han J Q, and E W N 2018 Comput. Phys. Commun. 228 178
[37] Behler J 2011 J. Chem. Phys. 134 074106
[38] Pinheiro M, Ge F C, Ferré N, Dral P O, and Barbatti M 2021 Chem. Sci. 12 14396
[39] Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301
[40] Chmiela S, Tkatchenko A, Sauceda H E et al. 2017 Sci. Adv. 3 e1603015
[41] Glielmo A, Sollich P, and De Vita A 2017 Phys. Rev. B 95 214302
[42] Ozaki T and Kino H 2004 Phys. Rev. B 69 195113
[43] Ozaki T 2003 Phys. Rev. B 67 155108
[44] Weinert U 1980 Arch. Ration. Mech. Anal. 74 165
[45] Morrison M A and Parker G A 1987 Aust. J. Phys. 40 465
[46] Grisafi A, Wilkins D M, Csányi G, and Ceriotti M 2018 Phys. Rev. Lett. 120 036002
[47] Thomas N, Smidt T, Kearnes S et al. 2018 arXiv:1802.08219 [cs.LG]
[48] Naveed H, Khan A U, Qiu S et al. 2023 arXiv:2307.06435 [cs.CL]
[49] Zhao W X, Zhou K, Li J Y et al. 2023 arXiv:2303.18223 [cs.CL]
[50] Zeng L Y, Hu X W, Zhou Y Z et al. 2023 Innovat. Mater. 1 100042
[51] Zeng L Y, Hu X W, Zhou Y Z et al. 2024 Adv. Sci. 11 2305054
[52] Zeng L Y, Wang Z Q, Song J et al. 2023 Adv. Funct. Mater. 33 2301929
[53] Zhao S G, Kang L, Shen Y G et al. 2016 J. Am. Chem. Soc. 138 2961
[54] Zhang J W, Wang W H, Xie M X et al. 2023 Electrochim. Acta 461 142691
[55] Baumann A E, Burns D A, Liu B, and Thoi V S 2019 Commun. Chem. 2 86
[56] Felix Sahayaraj A, Joy Prabu H, Maniraj J et al. 2023 J. Inorg. Organomet. Polym. Mater. 33 1757
[57] Mancuso J L, Mroz A M, Le K N, and Hendon C H 2020 Chem. Rev. 120 8641
[58] Rosen A S, Fung V, Huck P et al. 2022 npj Comput. Mater. 8 112
[59] Rosen A S, Iyer S M, Ray D et al. 2021 Matter 4 1578
[60] Stassen I, Burtch N, Talin A et al. 2017 Chem. Soc. Rev. 46 3185
[61] Chung Y G, Camp J, Haranczyk M et al. 2014 Chem. Mater. 26 6185
[62] Chung Y G, Haldoupis E, Bucior B J et al. 2019 J. Chem. Eng. Data 64 5985
[63] Merchant A, Batzner S, Schoenholz S S et al. 2023 Nature 624 80
[64] He C Y, Liao Y J, Ouyang T et al. 2023 Fundam. Res.
[65] Bhattacharya A, Timokhin I, Chatterjee R, Yang Q, and Mishchenko A 2023 npj Comput. Mater. 9 101
[66] Huber S D and Altman E 2010 Phys. Rev. B 82 184502
Related articles from Frontiers Journals
[1] Ran Liu, Shuang Liu, Ying Zhang, Peng Wang, and Zhen Yao. Systematical High-Pressure Study of Praseodymium Nitrides in N-Rich Region[J]. Chin. Phys. Lett., 2024, 41(6): 077103
[2] Mingfa Tang, Chang Liu, Aixia Zhang, Qingyun Zhang, Jiayu Zhai, Shengjun Yuan, and Youqi Ke. Random Green's Function Method for Large-Scale Electronic Structure Calculation[J]. Chin. Phys. Lett., 2024, 41(5): 077103
[3] Yi-Na Huang, Zhao-Feng Ye, Da-Yong Liu, and Hang-Qiang Qiu. Role of Lanthanide in the Electronic Properties of Rb$Ln_{2}$Fe$_{4}$As$_{4}$O$_{2}$ ($Ln$ = Sm and Ho) Superconductors[J]. Chin. Phys. Lett., 2023, 40(9): 077103
[4] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 077103
[5] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 077103
[6] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 077103
[7] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 077103
[8] LEI Shu-Lai, LI Bin, HUANG Jing, LI Qun-Xiang, YANG Jin-Long. A First-Principles Investigation of the Carrier Doping Effect on the Magnetic Properties of Defective Graphene[J]. Chin. Phys. Lett., 2013, 30(7): 077103
[9] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 077103
[10] LIU Hong-Sheng, FANG Xiao-Yong, SONG Wei-Li, HOU Zhi-Ling, LU Ran, YUAN Jie, CAO Mao-Sheng. Modification of Band Gap of -SiC by N-Doping[J]. Chin. Phys. Lett., 2009, 26(6): 077103
[11] CHEN Jing-Zhe, CHEN Xing, LIU Guang-Hua, HAN Ru-Shan. Electron Orbital Magnetic Moments in the Armchair Carbon Nanotubes[J]. Chin. Phys. Lett., 2008, 25(8): 077103
[12] YANG Xi-Feng, LIU Zhao-Lin, CHEN Ping-Ping, CHEN Xiao-Shuang, LI Tian-Xin, LU Wei. Broadening of Photoluminescence by Nonhomogeneous Size Distribution of Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(8): 077103
[13] WANG Xi-En, LIU Ting-Yu, ZHANG Qi-Ren, ZHANG Hai-Yan, SONG Min, GUOXiao-Feng, YIN Ji-Gang. First Principles Study on Electronic Structures of Mn2+:CdMoO4 Crystals[J]. Chin. Phys. Lett., 2008, 25(3): 077103
[14] CHEN Jing-Zhe, ZHANG Jin, HAN Ru-Shan. First Principles Calculation of Universal Conductance Fluctuation in Monatomic Metal Chains[J]. Chin. Phys. Lett., 2008, 25(3): 077103
[15] CHEN Jian-Yu, ZHANG Qi-Ren, LIU Ting-Yu, SHAO Ze-Xu, PU Chun-Ying. Electronic Structures of PbMoO4 Crystals with F-Type Colour Centres[J]. Chin. Phys. Lett., 2007, 24(6): 077103
Viewed
Full text


Abstract