Chin. Phys. Lett.  2024, Vol. 41 Issue (7): 074202    DOI: 10.1088/0256-307X/41/7/074202
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Nonreciprocal Photon Blockade Based on Zeeman Splittings Induced by a Fictitious Magnetic Field
Xin Su1,2, Biao-Bing Jin2, Jiang-Shan Tang1*, and Keyu Xia1*
1College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
2Research Institute of Superconductor Electronics (RISE) & Key Laboratory of Optoelectronic Devices and Systems with Extreme Performances of MOE, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
Cite this article:   
Xin Su, Biao-Bing Jin, Jiang-Shan Tang et al  2024 Chin. Phys. Lett. 41 074202
Download: PDF(1193KB)   PDF(mobile)(1618KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum nonreciprocity, such as nonreciprocal photon blockade, has attracted a great deal of attention due to its unique applications in quantum information processing. Its implementation primarily relies on rotating nonlinear systems, based on the Sagnac effect. Here, we propose an all-optical approach to achieve nonreciprocal photon blockade in an on-chip microring resonator coupled to a V-type Rb atom, which arises from the Zeeman splittings of the atomic hyperfine sublevels induced by the fictitious magnetic field of a circularly polarized control laser. The system manifests single-photon blockade or multi-photon tunneling when driven from opposite directions. This nonreciprocity results from the directional detunings between the countercirculating probe fields and the V-type atom, which does not require the mechanical rotation and facilitates integration. Our work opens up a new route to achieve on-chip integrable quantum nonreciprocity, enabling applications in chiral quantum technologies.
Received: 16 April 2024      Editors' Suggestion Published: 18 July 2024
PACS:  42.50.-p (Quantum optics)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.50.Ar  
  32.60.+i (Zeeman and Stark effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/7/074202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I7/074202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Su
Biao-Bing Jin
Jiang-Shan Tang
and Keyu Xia
[1] Asadchy V S, Mirmoosa M S, Díaz-Rubio A, Fan S, and Tretyakov S A 2020 Proc. IEEE 108 1684
[2] Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K, and Deck-Léger Z L 2018 Phys. Rev. Appl. 10 047001
[3] Freiser M 1968 IEEE Trans. Magn. 4 152
[4] Haider T 2017 Int. J. Electromagnet. Appl. 7 17
[5] Zhang T T, Zhou W P, Li Z X, Tang Y T, Xu F, Wu H D, Zhang H, Tang J S, Ruan Y P, and Xia K Y 2024 Chin. Phys. Lett. 41 044205
[6] Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, and Qi M 2012 Science 335 447
[7] Peng B, Özdemir Ş K, Lei F C, Monifi F, Gianfreda M, Long G L, Fan S H, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394
[8] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, and Xiao M 2014 Nat. Photonics 8 524
[9] Hua S, Wen J, Jiang X, Hua Q, Jiang L, and Xiao M 2016 Nat. Commun. 7 13657
[10] Li C, Yu Q, Zhang Y, Xiao M, and Zhang Z 2023 Laser & Photonics Rev. 17 2200267
[11] Lin G, Zhang S, Hu Y, Niu Y, Gong J, and Gong S 2019 Phys. Rev. Lett. 123 033902
[12] Kamal A, Clarke J, and Devoret M H 2011 Nat. Phys. 7 311
[13] Del Bino L, Silver J M, Woodley M T M, Stebbings S L, Zhao X, and Del'Haye P 2018 Optica 5 279
[14] Tang L, Tang J, Wu H, Zhang J, Xiao M, and Xia K 2021 Photonics Res. 9 1218
[15] Pan R K, Tang L, Xia K, and Nori F 2022 Chin. Phys. Lett. 39 124201
[16] Yu Z and Fan S 2009 Nat. Photonics 3 91
[17] Lira H, Yu Z, Fan S, and Lipson M 2012 Phys. Rev. Lett. 109 033901
[18] Sounas D L and Alù A 2017 Nat. Photonics 11 774
[19] Estep N A, Sounas D L, Soric J, and Alù A 2014 Nat. Phys. 10 923
[20] Kittlaus E A, Jones W M, Rakich P T, Otterstrom N T, Muller R E, and Rais-Zadeh M 2021 Nat. Photonics 15 43
[21] Xia K, Nori F, and Xiao M 2018 Phys. Rev. Lett. 121 203602
[22] Zhang S, Hu Y, Lin G, Niu Y, Xia K, Gong J, and Gong S 2018 Nat. Photonics 12 744
[23] Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, and Nori F 2021 Sci. Adv. 7 eabe8924
[24] Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, and You L 2020 Phys. Rev. Lett. 125 123901
[25] Manipatruni S, Robinson J T, and Lipson M 2009 Phys. Rev. Lett. 102 213903
[26] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photonics 10 657
[27] Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, and Dong C H 2018 Nat. Commun. 9 1797
[28] Ruesink F, Miri M A, Alù A, and Verhagen E 2016 Nat. Commun. 7 13662
[29] Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, and Painter O 2017 Nat. Phys. 13 465
[30] Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, and Carmon T 2018 Nature 558 569
[31] Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601
[32] Xue W S, Shen H Z, and Yi X X 2020 Opt. Lett. 45 4424
[33] Xu X, Zhao Y, Wang H, Jing H, and Chen A 2020 Photonics Res. 8 143
[34] Li B, Huang R, Xu X, Miranowicz A, and Jing H 2019 Photonics Res. 7 630
[35] Shen H Z, Wang Q, Wang J, and Yi X X 2020 Phys. Rev. A 101 013826
[36] Xiang Y, Zuo Y, Xu X W, Huang R, and Jing H 2023 Phys. Rev. A 108 043702
[37] Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M, and Jing H 2020 Phys. Rev. Lett. 125 143605
[38] Horsley S A R, Wu J H, Artoni M, and La Rocca G C 2013 Phys. Rev. Lett. 110 223602
[39] Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, and Zhu S Y 2013 Phys. Rev. Lett. 110 093901
[40] Wu J H, Artoni M, and La Rocca G C 2014 Phys. Rev. Lett. 113 123004
[41] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473
[42] Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577
[43] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903
[44] Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, and Lodahl P 2015 Nat. Nanotechnol. 10 775
[45] Xia K, Lu G, Lin G, Cheng Y, Niu Y, Gong S, and Twamley J 2014 Phys. Rev. A 90 043802
[46] Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, and Xiao M 2019 Phys. Rev. A 99 043833
[47] Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C, and Zou C L 2021 Nat. Commun. 12 2389
[48] Yang P, Li M, Han X, He H, Li G, Zou C L, Zhang P, Qian Y, and Zhang T 2023 Laser & Photonics Rev. 17 2200574
[49] Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, and Xia K 2022 Phys. Rev. Lett. 128 203602
[50] Malz D, Tóth L D, Bernier N R, Feofanov A K, Kippenberg T J, and Nunnenkamp A 2018 Phys. Rev. Lett. 120 023601
[51] Abdo B, Sliwa K, Shankar S, Hatridge M, Frunzio L, Schoelkopf R, and Devoret M 2014 Phys. Rev. Lett. 112 167701
[52] Metelmann A and Clerk A A 2015 Phys. Rev. X 5 021025
[53] Liu D W, Li Z H, Chao S L, Wu Y, and Si L G 2024 Sci. Chin. Phys. Mech. & Astron. 67 260313
[54] Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, and Kimble H J 2005 Nature 436 87
[55] Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, and Kimble H J 2008 Science 319 1062
[56] Hamsen C, Tolazzi K N, Wilk T, and Rempe G 2018 Nat. Phys. 14 885
[57] Faraon A, Fushman I, Englund D, Stoltz N, Petroff P, and Vučković J 2008 Nat. Phys. 4 859
[58] Tang J, Tang L, Wu H, Wu Y, Sun H, Zhang H, Li T, Lu Y, Xiao M, and Xia K 2021 Phys. Rev. Appl. 15 064020
[59] Chen M, Tang J, Tang L, Wu H, and Xia K 2022 Phys. Rev. Res. 4 033083
[60] Lang C, Bozyigit D, Eichler C, Steffen L, Fink J M, Abdumalikov A A, Baur M, Filipp S, da Silva M P, Blais A, and Wallraff A 2011 Phys. Rev. Lett. 106 243601
[61] Liu Y X, Xu X W, Miranowicz A, and Nori F 2014 Phys. Rev. A 89 043818
[62] Hoffman A J, Srinivasan S J, Schmidt S, Spietz L, Aumentado J, Türeci H E, and Houck A A 2011 Phys. Rev. Lett. 107 053602
[63] Tang J, Wu Y, Wang Z, Sun H, Tang L, Zhang H, Li T, Lu Y, Xiao M, and Xia K 2020 Phys. Rev. A 101 053802
[64] Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, and Vuletić V 2012 Nature 488 57
[65] Firstenberg O, Peyronel T, Liang Q Y, Gorshkov A V, Lukin M D, and Vuletić V 2013 Nature 502 71
[66] Rabl P 2011 Phys. Rev. Lett. 107 063601
[67] Nunnenkamp A, Børkje K, and Girvin S M 2011 Phys. Rev. Lett. 107 063602
[68] Liao J Q and Nori F 2013 Phys. Rev. A 88 023853
[69] Imamoḡlu A, Schmidt H, Woods G, and Deutsch M 1997 Phys. Rev. Lett. 79 1467
[70] Werner M J and Imamoḡlu A 1999 Phys. Rev. A 61 011801
[71] Miranowicz A, Paprzycka M, Liu Y X, Bajer J, and Nori F 2013 Phys. Rev. A 87 023809
[72] Su X, Tang J S, and Xia K 2022 Phys. Rev. A 106 063707
[73] Huang R, Özdemir Ş K, Liao J Q, Minganti F, Kuang L M, Nori F, and Jing H 2022 Laser & Photonics Rev. 16 2100430
[74] Zuo Y, Huang R, Kuang L M, Xu X W, and Jing H 2022 Phys. Rev. A 106 043715
[75] Cohen-Tannoudji C and Dupont-Roc J 1972 Phys. Rev. A 5 968
[76] Le Kien F, Schneeweiss P, and Rauschenbeutel A 2013 Eur. Phys. J. D 67 92
[77] Rosenbusch P, Ghezali S, Dzuba V A, Flambaum V V, Beloy K, and Derevianko A 2009 Phys. Rev. A 79 013404
[78] Park C Y, Noh H, Lee C M, and Cho D 2001 Phys. Rev. A 63 032512
[79] Leszczyński A, Mazelanik M, Lipka M, Parniak M, Dąbrowski M, and Wasilewski W 2018 Opt. Lett. 43 1147
[80] Junge C, O'Shea D, Volz J, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 213604
[81] Shao Z, Zhu J, Chen Y, Zhang Y, and Yu S 2018 Nat. Commun. 9 926
Related articles from Frontiers Journals
[1] Shuang-Yin Huang, Jing Gao, Zhi-Cheng Ren, Zi-Mo Cheng, Wen-Zheng Zhu, Shu-Tian Xue, Yan-Chao Lou, Zhi-Feng Liu, Chao Chen, Fei Zhu, Li-Ping Yang, Xi-Lin Wang, and Hui-Tian Wang. Manipulating the Spatial Structure of Second-Order Quantum Coherence Using Entangled Photons[J]. Chin. Phys. Lett., 2024, 41(7): 074202
[2] Waner Hou, Hao Tang, Qin Xu, and Yiheng Lin. Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion[J]. Chin. Phys. Lett., 2024, 41(4): 074202
[3] Kai-Wei Huang, Xin Wang, Qing-Yang Qiu, Long Wu, and Hao Xiong. Nonreciprocal Phonon Laser in an Asymmetric Cavity with an Atomic Ensemble[J]. Chin. Phys. Lett., 2023, 40(10): 074202
[4] Lei Xu, Ling-Xiao Wang, Guang-Jie Chen, Liang Chen, Yuan-Hao Yang, Xin-Biao Xu, Aiping Liu, Chuan-Feng Li, Guang-Can Guo, Chang-Ling Zou, and Guo-Yong Xiang. Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt[J]. Chin. Phys. Lett., 2023, 40(9): 074202
[5] Jian-Yin Huang, Peng-Jun Liang, Liang Zheng, Pei-Yun Li, You-Zhi Ma, Duan-Chen Liu, Jing-Hui Xie, Zong-Quan Zhou, Chuan-Feng Li, and Guang-Can Guo. Stark Tuning of Telecom Single-Photon Emitters Based on a Single Er$^{3+}$[J]. Chin. Phys. Lett., 2023, 40(7): 074202
[6] Ze-Huan Chen, Fei-Yu Wang, Hua Chen, Jin-Cheng Lu, and Chen Wang. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System[J]. Chin. Phys. Lett., 2023, 40(5): 074202
[7] Zhaoyang Peng, Huayu Hu, Zengxiu Zhao, and Jianmin Yuan. Quantum Optical Description of Radiation by a Two-Level System in Strong Laser Fields[J]. Chin. Phys. Lett., 2023, 40(5): 074202
[8] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074202
[9] M.-L. Cai, Z.-D. Liu, Y. Jiang, Y.-K. Wu, Q.-X. Mei, W.-D. Zhao, L. He, X. Zhang, Z.-C. Zhou, and L.-M. Duan. Probing a Dissipative Phase Transition with a Trapped Ion through Reservoir Engineering[J]. Chin. Phys. Lett., 2022, 39(2): 074202
[10] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 074202
[11] Rui Zhang, Yuan-Chuan Biao, Wen-Long You, Xiao-Guang Wang, Yu-Yu Zhang, and Zi-Xiang Hu. Generalized Rashba Coupling Approximation to a Resonant Spin Hall Effect of the Spin–Orbit Coupling System in a Magnetic Field[J]. Chin. Phys. Lett., 2021, 38(7): 074202
[12] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[13] Liwei Duan, Yan-Zhi Wang, and Qing-Hu Chen. $\mathcal{PT}$ Symmetry of a Square-Wave Modulated Two-Level System[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[14] Zhiqiang Ren , Rong Wen , and J. F. Chen. Photon Coalescence in a Lossy Non-Hermitian Beam Splitter[J]. Chin. Phys. Lett., 2020, 37(8): 074202
[15] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 074202
Viewed
Full text


Abstract