FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Resolution Recognition of Orbital Angular Momentum Modes in Asymmetric Bessel Beams Assisted by Deep Learning |
Pengfei Xu, Xin Tong, Zishuai Zeng, Shuxi Liu, and Daomu Zhao* |
Zhejiang Key Laboratory of Micro-nano Quantum Chips and Quantum Control, School of Physics, Zhejiang University, Hangzhou 310058, China |
|
Cite this article: |
Pengfei Xu, Xin Tong, Zishuai Zeng et al 2024 Chin. Phys. Lett. 41 074201 |
|
|
Abstract Fractional orbital angular momentum (OAM) vortex beams present a promising way to increase the data throughput in optical communication systems. Nevertheless, high-precision recognition of fractional OAM with different propagation distances remains a significant challenge. We develop a convolutional neural network (CNN) method to realize high-resolution recognition of OAM modalities, leveraging asymmetric Bessel beams imbued with fractional OAM. Experimental results prove that our method achieves a recognition accuracy exceeding 94.3% for OAM modes, with an interval of 0.05, and maintains a high recognition accuracy above 92% across varying propagation distances. The findings of our research will be poised to significantly contribute to the deployment of fractional OAM beams within the domain of optical communications.
|
|
Received: 20 March 2024
Published: 08 July 2024
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
42.40.Jv
|
(Computer-generated holograms)
|
|
|
|
|
[1] | Allen L, Beijersbergen M W, Spreeuw R J C, and Woerdman J P 1992 Phys. Rev. A 45 8185 |
[2] | Padgett M J 2017 Opt. Express 25 11265 |
[3] | Wang J 2016 Photonics Res. 4 B14 |
[4] | Skelton S E, Sergides M, Saija R, Iatì M A, Maragó O M, and Jones P H 2013 Opt. Lett. 38 28 |
[5] | Jack B, Leach J, Romero J, Franke-Arnold S, Ritsch-Marte M, Barnett S M, and Padgett M J 2009 Phys. Rev. Lett. 103 083602 |
[6] | Ndagano B, Nape I, Cox M A, Rosales-Guzman C, and Forbes A 2018 J. Lightwave Technol. 36 292 |
[7] | Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y X, Yue Y, Dolinar S, Tur M, and Willner A E 2012 Nat. Photonics 6 488 |
[8] | Bozinovic N, Yue Y, Ren Y, Tur M, Kristensen P, Huang H, Willner A E, and Ramachandran S 2013 Science 340 1545 |
[9] | Gibson G, Courtial J, Padgett M J, Vasnetsov M, Pas'ko V, Barnett S M, and Franke-Arnold S 2004 Opt. Express 12 5448 |
[10] | Čelechovský R and Bouchal Z 2007 New J. Phys. 9 328 |
[11] | Leach J, Courtial J, Skeldon K, Barnett S M, Franke-Arnold S, and Padgett M J 2004 Phys. Rev. Lett. 92 013601 |
[12] | Hickmann J M, Fonseca E J S, Soares W C, and Chávez-Cerda S 2010 Phys. Rev. Lett. 105 053904 |
[13] | Peng Y, Gan X T, Ju P, Wang Y D, and Zhao J L 2015 Chin. Phys. Lett. 32 024201 |
[14] | Shen D and Zhao D 2019 Opt. Lett. 44 2334 |
[15] | Zhou X, Pang Z, and Zhao D 2022 Ann. Phys. 534 2100471 |
[16] | Leach J, Yao E, and Padgett M J 2004 New J. Phys. 6 71 |
[17] | Tao S H, Lee W M, and Yuan X C 2004 Appl. Opt. 43 122 |
[18] | Zhang N, Davis J A, Moreno I, Lin J, Moh K J, Cottrell D M, and Yuan X C 2010 Appl. Opt. 49 2456 |
[19] | Huang H C, Lin Y T, and Shih M F 2012 Opt. Commun. 285 383 |
[20] | Li P, Wang B, Song X, and Zhang X 2016 Opt. Lett. 41 1574 |
[21] | Zhu J, Zhang P, Fu D, Chen D, Liu R, Zhou Y, Gao H, and Li F 2016 Photonics Res. 4 187 |
[22] | Berger B, Kahlert M, Schmidt D, and Assmann M 2018 Opt. Express 26 32248 |
[23] | Alperin S N, Niederriter R D, Gopinath J T, and Siemens M E 2016 Opt. Lett. 41 5019 |
[24] | Deng D, Lin M, Li Y, and Zhao H 2019 Phys. Rev. Appl. 12 014048 |
[25] | LeCun Y, Bengio Y, and Hinton G 2015 Nature 521 436 |
[26] | Tong X, Xu R, Liu K, Zhao L, Zhu W, and Zhao D 2023 Adv. Photonics Res. 4 2200264 |
[27] | Tong X, Xu R, Xu P, Zeng Z, Liu S, and Zhao D 2023 Adv. Photonics 5 066003 |
[28] | Liu Z, Yan S, Liu H, and Chen X 2019 Phys. Rev. Lett. 123 183902 |
[29] | Na Y and Ko D K 2021 Sci. Rep. 11 2678 |
[30] | Cao F and Xie C 2022 Appl. Opt. 61 4518 |
[31] | Sun J J, Sun S, and Yang L J 2022 IEEE Trans. Antennas Propag. 70 6775 |
[32] | Cao M, Yin Y, Zhou J, Tang J, Cao L, Xia Y, and Yin J 2021 Appl. Phys. Lett. 119 141103 |
[33] | Zhou J, Yin Y, Tang J, Ling C, Cao M, Cao L, Liu G, Yin J, and Xia Y 2022 Phys. Rev. A 106 013519 |
[34] | Cao F, Pu T, and Xie C 2021 Appl. Opt. 60 11134 |
[35] | Wang H, Zhan Z, Shen Y, Hu J, Fu X, and Liu Q 2022 Opt. Express 30 29781 |
[36] | Zhu Y and Newsam S 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017, pp 790–794 |
[37] | Kotlyar V V, Kovalev A A, and Soifer V A 2014 Opt. Lett. 39 2395 |
[38] | He L Q, Bai X L, and Lin J C 2012 Inf. Technol. Appl. Industry 263–266 1568 |
[39] | Lin W S and Jay Kuo C C 2011 J. Vis. Commun. Image Represent. 22 297 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|