CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe$_{3}$GaTe$_{2}$ |
Xiaomin Zhang1,2, Jian Wang1,2, Wenkai Zhu1, Jiaqian Zhang3, Weihao Li1,2, Jing Zhang1,2*, and Kaiyou Wang1,2* |
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China 2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China 3School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
|
|
Cite this article: |
Xiaomin Zhang, Jian Wang, Wenkai Zhu et al 2024 Chin. Phys. Lett. 41 067503 |
|
|
Abstract The discovery of ferromagnetic two-dimensional (2D) van der Waals (vdWs) materials provides an opportunity to explore intriguing physics and to develop innovative spin electronic devices. However, the main challenge for practical applications of vdWs ferromagnetic crystals lies in the weak intrinsic ferromagnetism and small perpendicular magnetic anisotropy (PMA) above room temperature. Here, we report the intrinsic vdWs ferromagnetic crystal Fe$_{3}$GaTe$_{2}$, synthesized by the self-flux method, exhibiting a Curie temperature ($T_{\rm C}$) of 370 K, a high saturation magnetization of 33.47 emu/g, and a large PMA energy density of approximately $4.17 \times 10^{5}$ J/m$^{3}$. Furthermore, the magneto-optical effect is systematically investigated in Fe$_{3}$GaTe$_{2}$. The doubly degenerate $E_{\rm 2g} (\varGamma)$ mode reverses the helicity of incident photons, indicating the existence of pseudoangular-momentum (PAM) and chirality. Meanwhile, the non-degenerate non-chiral $A_{\rm 1g}(\varGamma)$ phonon exhibits a significant magneto-Raman effect under an external out-of-plane magnetic field. These results lay the groundwork for studying phonon chirality and magneto-optical phenomena in 2D magnetic materials, providing the feasibility for further fundamental research and applications in spintronic devices.
|
|
Received: 08 April 2024
Published: 20 June 2024
|
|
PACS: |
75.70.Ak
|
(Magnetic properties of monolayers and thin films)
|
|
85.70.Ay
|
(Magnetic device characterization, design, and modeling)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
|
|
|
[1] | Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[2] | Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X D 2017 Nature 546 270 |
[3] | Zhuang H L, Xie Y, Kent P R C, and Ganesh P 2015 Phys. Rev. B 92 035407 |
[4] | Li T X, Jiang S W, Sivadas N, Wang Z F, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, and Shan J 2019 Nat. Mater. 18 1303 |
[5] | O'Hara D J, Zhu T C, Trout A H, Ahmed A S, Luo Y K, Lee C H, Brenner M R, Rajan S, Gupta J A, McComb D W, and Kawakami R K 2018 Nano Lett. 18 3125 |
[6] | Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H F, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y, Huang Y, Xu X D, Duan X D, Ji W, and Duan X F 2021 Nat. Mater. 20 818 |
[7] | Kim K, Lim S Y, Lee J U, Lee S, Kim T Y, Park K, Jeon G S, Park C H, Park J G, and Cheong H 2019 Nat. Commun. 10 345 |
[8] | Wang Z A, Xue W S, Yan F G, Zhu W K, Liu Y, Zhang X H, Wei Z M, Chang K, Yuan Z, and Wang K Y 2023 Nano Lett. 23 710 |
[9] | Wang Z A, Zhang X M, Zhu W K, Yan F G, Liu P F, Yuan Z, and Wang K Y 2023 Chin. Phys. Lett. 40 077201 |
[10] | Lin H L, Yan F G, Hu C, Zheng Y H, Sheng Y, Zhu W K, Wang Z A, Zheng H Z, and Wang K Y 2022 Nanoscale 14 2352 |
[11] | Zhu W K, Lin H L, Yan F G, Hu C, Wang Z A, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y H, Patanè A, Žutić I, Li S S, Zheng H Z, and Wang K Y 2021 Adv. Mater. 33 2104658 |
[12] | Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z A, Wei Z M, Chang K, and Wang K Y 2020 ACS Appl. Mater. & Interfaces 12 43921 |
[13] | Hu C, Yan F G, Li Y C, and Wang K Y 2021 Chin. Phys. B 30 097505 |
[14] | Hu C, Zhang D, Yan F G, Li Y C, Lv Q S, Zhu W K, Wei Z M, Chang K, and Wang K Y 2020 Sci. Bull. 65 1072 |
[15] | Zheng Y H, Ma X L, Yan F G, Lin H L, Zhu W K, Ji Y, Wang R S, and Wang K Y 2022 npj 2D Mater. Appl. 6 62 |
[16] | Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X D 2018 Nat. Nanotechnol. 13 544 |
[17] | Jiang S, Li L, Wang Z, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549 |
[18] | Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94 |
[19] | Li Q, Yang M M, Gong C, Chopdekar R V, N'Diaye A T, Turner J, Chen G, Scholl A, Shafer P, Arenholz E, Schmid A K, Wang S, Liu K, Gao N, Admasu A S, Cheong S W, Hwang C, Li J, Wang F, Zhang X, and Qiu Z Q 2018 Nano Lett. 18 5974 |
[20] | Wang H, Liu Y, Wu P, Hou W, Jiang Y, Li X, Pandey C, Chen D, Yang Q, Wang H, Wei D, Lei N, Kang W, Wen L, Nie T, Zhao W, and Wang K L 2020 ACS Nano 14 10045 |
[21] | Zhang L, Huang X, Dai H, Wang M, Cheng H, Tong L, Li Z, Han X, Wang X, Ye L, and Han J 2020 Adv. Mater. 32 2002032 |
[22] | Idzuchi H, Llacsahuanga Allcca A E, Pan X C, Tanigaki K, and Chen Y P 2019 Appl. Phys. Lett. 115 232403 |
[23] | Cao Y, Zhang X M, Zhang X P, Yan F G, Wang Z A, Zhu W K, Tan H, Golovach V N, Zheng H Z, and Wang K Y 2022 Phys. Rev. Appl. 17 L051001 |
[24] | May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z Y, Liu Y H, Xu X D, and McGuire M A 2019 ACS Nano 13 4436 |
[25] | Sun X, Li W, Wang X, Sui Q, Zhang T, Wang Z, Liu L, Li D, Feng S, Zhong S, Wang H, Bouchiat V, Nunez Regueiro M, Rougemaille N, Coraux J, Purbawati A, Hadj-Azzem A, Wang Z, Dong B, Wu X, Yang T, Yu G, Wang B, Han Z, Han X, and Zhang Z 2020 Nano Res. 13 3358 |
[26] | Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067 |
[27] | Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z A, Zhang X M, Xu J H, Wang Y J, Zheng Y H, Yan F G, Zhang J, Zhao L X, Patané A, Zhang J, Chang H X, and Wang K Y 2022 Chin. Phys. Lett. 39 128501 |
[28] | Li W H, Zhu W K, Zhang G J, Wu H, Zhu S G, Li R Z, Zhang E Z, Zhang X M, Deng Y C, Zhang J, Zhao L X, Chang H X, and Wang K Y 2023 Adv. Mater. 35 2303688 |
[29] | Pan Z C, Li D, Ye X G, Chen Z, Chen Z H, Wang A Q, Tian M L, Yao G J, Liu K H, and Liao Z M 2023 Sci. Bull. 68 2743 |
[30] | Ji Y B, Yang S, Ahn H B, Moon K W, Ju T S, Im M Y, Han H S, Lee J S, Park S Y, Lee C G, Kim K J, and Hwang C Y 2024 Adv. Mater. 36 2312013 |
[31] | Strohm C, Rikken G L J A, and Wyder P 2005 Phys. Rev. Lett. 95 155901 |
[32] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 |
[33] | Kim K, Vetter E, Yan L, Yang C, Wang Z, Sun R, Yang Y, Comstock A H, Li X, Zhou J, Zhang L, You W, Sun D, and Liu J 2023 Nat. Mater. 22 322 |
[34] | Wang C S, Wang J, Xie W Q, Zhang G J, Wu H, Zhou J H, Zhu X D, Ning W, Wang G P, Tan C, Wang L, Du H F, Zhao Y J, Chang H X, Zheng G L, Geng W T, and Tian M L 2023 Phys. Rev. B 107 L140409 |
[35] | Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, and Xu X D 2018 Nat. Mater. 17 778 |
[36] | Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646 |
[37] | Zhang Z D 2007 Philos. Mag. 87 5309 |
[38] | Zang Z H, Zhu Y Z, Xi M, Tian S J, Wang T T, Gu P F, Peng Y X, Yang S Q, Xu X L, Li Y P, Han B, Liu L W, Wang Y L, Gao P, Yang J B, Lei H C, Huang Y, and Ye Y 2022 Phys. Rev. Lett. 128 017201 |
[39] | Jin W C, Kim H H, Ye Z P, Li S W, Rezaie P, Diaz F, Siddiq S, Wauer E, Yang B W, Li C H, Tian S J, Sun K, Lei H C, Tsen A W, Zhao L Y, and He R 2018 Nat. Commun. 9 5122 |
[40] | Peng Y X, Cheng X, Gu P F, Wang F G, Yang J, Xue M Z, Yang W Y, Wang C S, Liu S Q, Watanabe K, Taniguchi T, Ye Y, and Yang J B 2020 Adv. Funct. Mater. 30 1910036 |
[41] | Wang M J, Lei B, Zhu K J, Deng Y Z, Tian M L, Xiang Z J, Wu T, and Chen X H 2024 npj 2D Mater. Appl. 8 22 |
[42] | Gong Y, Hu M, Harris N, Yang Z H, Xie T, Teklu A, Kuthirummal N, Koenemann J, Xu X H, Cheong S W, McLoud W, and Gong C 2022 npj 2D Mater. Appl. 6 9 |
[43] | Ji J T, Zhang A M, Fan J H, Li Y S, Wang X Q, Zhang J D, Plummer E W, and Zhang Q M 2016 Proc. Natl. Acad. Sci. USA 113 2349 |
[44] | Yin T T, Ulman K A, Liu S, Águila A G, Huang Y Q, Zhang L F, Serra M, Sedmidubsky D, Sofer Z, Quek S Y, and Xiong Q H 2021 Adv. Mater. 33 2101618 |
[45] | Du L J, Tang J, Zhao Y C, Li X M, Yang R, Hu X R, Bai X Y, Wang X, Watanabe K, Taniguchi T, Shi D X, Yu G Q, Bai X D, Hasan T, Zhang G Y, and Sun Z P 2019 Adv. Funct. Mater. 29 1904734 |
[46] | Lyu B, Gao Y F, Zhang Y J, Wang L, Wu X H, Chen Y N, Zhang J S, Li G M, Huang Q L, Zhang N P, Chen Y Z, Mei J W, Yan H G, Zhao Y, Huang L, and Huang M Y 2020 Nano Lett. 20 6024 |
[47] | McCreary A, Mai T T, Utermohlen F G, Simpson J R, Garrity K F, Feng X Z, Shcherbakov D, Zhu Y L, Hu J, Weber D, Watanabe K, Taniguchi T, Goldberger J E, Mao Z Q, Lau C N, Lu Y M, Trivedi N, Valdés Aguilar R, and Hight Walker A R 2020 Nat. Commun. 11 3879 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|