CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Low-Voltage IGZO Field-Effect Ultraviolet Photodiode |
Shuang Song1,3, Huili Liang1,2*, Wenxing Huo4, Guang Zhang5, Yonghui Zhang6, Jiwei Wang3, and Zengxia Mei1,2* |
1Songshan Lake Materials Laboratory, Dongguan 523808, China 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 3College of Physics, Liaoning University, Shenyang 110036, China 4Department of Instruments Science and Technology, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China 5National Key Laboratory of Scattering and Radiation, Beijing 100039, China 6School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
|
|
Cite this article: |
Shuang Song, Huili Liang, Wenxing Huo et al 2024 Chin. Phys. Lett. 41 068501 |
|
|
Abstract In the era of Internet of Things (IoTs), an energy-efficient ultraviolet (UV) photodetector (PD) is highly desirable considering the massive usage scenarios such as environmental sterilization, fire alarm and corona discharge monitoring. So far, common self-powered UV PDs are mainly based on metal-semiconductor hetero-structures or p–n heterojunctions, where the limited intrinsic built-in electric field restricts further enhancement of the photoresponsivity. In this work, an extremely low-voltage field-effect UV PD is proposed using a gate-drain shorted amorphous IGZO (a-IGZO) thin film transistor (TFT) architecture. A combined investigation of the experimental measurements and technology computer-aided design (TCAD) simulations suggests that the reverse current ($I_{\rm R}$) of field-effect diode (FED) is highly related with the threshold voltage ($V_{\rm th}$) of the parental TFT, implying an enhancement-mode TFT is preferable to fabricate the field-effect UV PD with low dark current. Driven by a low bias of $-0.1$ V, decent UV response has been realized including large UV/visible ($R_{300}/R_{550}$) rejection ratio ($1.9\times 10^{3}$), low dark current ($1.15\times 10^{-12}$ A) as well as high photo-to-dark current ratio (PDCR, $\sim$ $10^{3}$) and responsivity (1.89 A/W). This field-effect photodiode provides a new platform to construct UV PDs with well-balanced photoresponse performance at a low bias, which is attractive for designs of large-scale smart sensor networks with high energy efficiency.
|
|
Received: 02 April 2024
Published: 20 June 2024
|
|
PACS: |
85.60.Dw
|
(Photodiodes; phototransistors; photoresistors)
|
|
85.30.Tv
|
(Field effect devices)
|
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
|
|
|
[1] | Yoo H, Lee I S, Jung S, Rho S M, Kang B H, and Kim H J 2021 Adv. Mater. 33 2006091 |
[2] | Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A, and Fang X S 2015 Mater. Today 18 493 |
[3] | Akmandor A O, Yin H X, and Jha N K 2018 IEEE Trans. Multi-Scale Comput. Syst. 4 914 |
[4] | Nwadiugwu W P and Kim D S 2018 $3$rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU) (Bhimtal, India, 23–24 Febrary 2018) p 127 |
[5] | Huang C Y, Peng T Y, and Hsieh W T 2020 ACS Appl. Electron. Mater. 2 2976 |
[6] | Huang C Y, Huang C P, Chen H, Pai S W, Wang P J, He X R, and Chen J C 2020 Vacuum 180 109619 |
[7] | Wang M Y, Zhang J W, Xin Q, Yi L, Guo Z K, Wang Y M, and Song A M 2022 Opt. Express 30 27453 |
[8] | Wang T, Liang H L, Han Z Y, Sui Y X, and Mei Z X 2021 Adv. Mater. Technol. 6 2000945 |
[9] | Cui S J, Mei Z X, Zhang Y H, Liang H L, and Du X L 2017 Adv. Opt. Mater. 5 1700454 |
[10] | Lai Y H, Wang I T, and Hou T H 2022 Adv. Funct. Mater. 32 2200282 |
[11] | Zhu R, Liang H L, Bai H, Zhu T, and Mei Z X 2022 Appl. Mater. Today 29 101556 |
[12] | Han Z Y, Song S, Liang H L, Shao H, Hu S G, Wang Y, Wang J W, and Mei Z X 2022 Appl. Phys. Lett. 120 262102 |
[13] | Pei Z, Lai H C, Wang J Y, Chiang W H, and Chen C H 2015 IEEE Electron Device Lett. 36 44 |
[14] | Han Z Y, Liang H L, Huo W X, Zhu X S, Du X L, and Mei Z X 2020 Adv. Opt. Mater. 8 1901833 |
[15] | Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, and Morkoç H 2005 J. Appl. Phys. 98 041301 |
[16] | Liao Y K, Kim Y J, and Kim M 2023 Chem. Eng. J. 476 146838 |
[17] | Zhou H T, Li L, Chen H Y, Guo Z, Jiao S J, and Sun W J 2015 RSC Adv. 5 87993 |
[18] | Zhang Y H, Mei Z X, Cui S J, Liang H L, Liu Y P, and Du X L 2016 Adv. Electron. Mater. 2 1500486 |
[19] | Chang C Y, Ko R M, Huang S J, Su M Y, Wu C H, and Wang S J 2022 IEEE Electron Device Lett. 43 1299 |
[20] | Wager J F 2020 Inf. Disp. 36 9 |
[21] | Hara Y, Kikuchi T, Kitagawa H, Morinaga J, Ohgami H, Imai H, Daitoh T, and Matsuo T 2018 J. Soc. Inf. Disp. 26 169 |
[22] | Huo W X, Mei Z X, Lu Y C, Han Z Y, Zhu R, Wang T, Sui Y X, Liang H L, and Du X L 2019 Chin. Phys. B 28 087302 |
[23] | Ide K, Nomura K, Hosono H, and Kamiya T 2019 Phys. Status Solidi A 216 1800372 |
[24] | Sui Y X, Liang H L, Chen Q S, Huo W X, Du X L, and Mei Z X 2020 ACS Appl. Mater. & Interfaces 12 8929 |
[25] | Jeong J K, Won Yang H, Jeong J H, Mo Y G, and Kim H D 2008 Appl. Phys. Lett. 93 123508 |
[26] | Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X, and Du X L 2019 ACS Photonics 6 351 |
[27] | Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Ghaffarzadeh K, Robertson J, and Kim K 2012 Nat. Mater. 11 301 |
[28] | Huang C Y, Li W Y, Hsiao Y H, Gao W N, and Chen C J 2020 Smart Mater. Struct. 29 115019 |
[29] | Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, and Tang W H 2019 J. Mater. Chem. C 7 13920 |
[30] | Jia B, Zhang C, Liu M, Li Z, Wang J, Zhong L, Han C Y, Qin M, and Huang X D 2023 Nat. Commun. 14 5330 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|