Chin. Phys. Lett.  2024, Vol. 41 Issue (6): 068501    DOI: 10.1088/0256-307X/41/6/068501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Low-Voltage IGZO Field-Effect Ultraviolet Photodiode
Shuang Song1,3, Huili Liang1,2*, Wenxing Huo4, Guang Zhang5, Yonghui Zhang6, Jiwei Wang3, and Zengxia Mei1,2*
1Songshan Lake Materials Laboratory, Dongguan 523808, China
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3College of Physics, Liaoning University, Shenyang 110036, China
4Department of Instruments Science and Technology, School of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
5National Key Laboratory of Scattering and Radiation, Beijing 100039, China
6School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
Cite this article:   
Shuang Song, Huili Liang, Wenxing Huo et al  2024 Chin. Phys. Lett. 41 068501
Download: PDF(1433KB)   PDF(mobile)(1705KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the era of Internet of Things (IoTs), an energy-efficient ultraviolet (UV) photodetector (PD) is highly desirable considering the massive usage scenarios such as environmental sterilization, fire alarm and corona discharge monitoring. So far, common self-powered UV PDs are mainly based on metal-semiconductor hetero-structures or p–n heterojunctions, where the limited intrinsic built-in electric field restricts further enhancement of the photoresponsivity. In this work, an extremely low-voltage field-effect UV PD is proposed using a gate-drain shorted amorphous IGZO (a-IGZO) thin film transistor (TFT) architecture. A combined investigation of the experimental measurements and technology computer-aided design (TCAD) simulations suggests that the reverse current ($I_{\rm R}$) of field-effect diode (FED) is highly related with the threshold voltage ($V_{\rm th}$) of the parental TFT, implying an enhancement-mode TFT is preferable to fabricate the field-effect UV PD with low dark current. Driven by a low bias of $-0.1$ V, decent UV response has been realized including large UV/visible ($R_{300}/R_{550}$) rejection ratio ($1.9\times 10^{3}$), low dark current ($1.15\times 10^{-12}$ A) as well as high photo-to-dark current ratio (PDCR, $\sim$ $10^{3}$) and responsivity (1.89 A/W). This field-effect photodiode provides a new platform to construct UV PDs with well-balanced photoresponse performance at a low bias, which is attractive for designs of large-scale smart sensor networks with high energy efficiency.
Received: 02 April 2024      Published: 20 June 2024
PACS:  85.60.Dw (Photodiodes; phototransistors; photoresistors)  
  85.30.Tv (Field effect devices)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/6/068501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I6/068501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shuang Song
Huili Liang
Wenxing Huo
Guang Zhang
Yonghui Zhang
Jiwei Wang
and Zengxia Mei
[1] Yoo H, Lee I S, Jung S, Rho S M, Kang B H, and Kim H J 2021 Adv. Mater. 33 2006091
[2] Chen H Y, Liu K W, Hu L F, Al-Ghamdi A A, and Fang X S 2015 Mater. Today 18 493
[3] Akmandor A O, Yin H X, and Jha N K 2018 IEEE Trans. Multi-Scale Comput. Syst. 4 914
[4] Nwadiugwu W P and Kim D S 2018 $3$rd International Conference On Internet of Things: Smart Innovation and Usages (IoT-SIU) (Bhimtal, India, 23–24 Febrary 2018) p 127
[5] Huang C Y, Peng T Y, and Hsieh W T 2020 ACS Appl. Electron. Mater. 2 2976
[6] Huang C Y, Huang C P, Chen H, Pai S W, Wang P J, He X R, and Chen J C 2020 Vacuum 180 109619
[7] Wang M Y, Zhang J W, Xin Q, Yi L, Guo Z K, Wang Y M, and Song A M 2022 Opt. Express 30 27453
[8] Wang T, Liang H L, Han Z Y, Sui Y X, and Mei Z X 2021 Adv. Mater. Technol. 6 2000945
[9] Cui S J, Mei Z X, Zhang Y H, Liang H L, and Du X L 2017 Adv. Opt. Mater. 5 1700454
[10] Lai Y H, Wang I T, and Hou T H 2022 Adv. Funct. Mater. 32 2200282
[11] Zhu R, Liang H L, Bai H, Zhu T, and Mei Z X 2022 Appl. Mater. Today 29 101556
[12] Han Z Y, Song S, Liang H L, Shao H, Hu S G, Wang Y, Wang J W, and Mei Z X 2022 Appl. Phys. Lett. 120 262102
[13] Pei Z, Lai H C, Wang J Y, Chiang W H, and Chen C H 2015 IEEE Electron Device Lett. 36 44
[14] Han Z Y, Liang H L, Huo W X, Zhu X S, Du X L, and Mei Z X 2020 Adv. Opt. Mater. 8 1901833
[15] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Doğan S, Avrutin V, Cho S J, and Morkoç H 2005 J. Appl. Phys. 98 041301
[16] Liao Y K, Kim Y J, and Kim M 2023 Chem. Eng. J. 476 146838
[17] Zhou H T, Li L, Chen H Y, Guo Z, Jiao S J, and Sun W J 2015 RSC Adv. 5 87993
[18] Zhang Y H, Mei Z X, Cui S J, Liang H L, Liu Y P, and Du X L 2016 Adv. Electron. Mater. 2 1500486
[19] Chang C Y, Ko R M, Huang S J, Su M Y, Wu C H, and Wang S J 2022 IEEE Electron Device Lett. 43 1299
[20] Wager J F 2020 Inf. Disp. 36 9
[21] Hara Y, Kikuchi T, Kitagawa H, Morinaga J, Ohgami H, Imai H, Daitoh T, and Matsuo T 2018 J. Soc. Inf. Disp. 26 169
[22] Huo W X, Mei Z X, Lu Y C, Han Z Y, Zhu R, Wang T, Sui Y X, Liang H L, and Du X L 2019 Chin. Phys. B 28 087302
[23] Ide K, Nomura K, Hosono H, and Kamiya T 2019 Phys. Status Solidi A 216 1800372
[24] Sui Y X, Liang H L, Chen Q S, Huo W X, Du X L, and Mei Z X 2020 ACS Appl. Mater. & Interfaces 12 8929
[25] Jeong J K, Won Yang H, Jeong J H, Mo Y G, and Kim H D 2008 Appl. Phys. Lett. 93 123508
[26] Liang H L, Cui S J, Su R, Guan P F, He Y H, Yang L H, Chen L M, Zhang Y H, Mei Z X, and Du X L 2019 ACS Photonics 6 351
[27] Jeon S, Ahn S E, Song I, Kim C J, Chung U I, Lee E, Yoo I, Nathan A, Lee S, Ghaffarzadeh K, Robertson J, and Kim K 2012 Nat. Mater. 11 301
[28] Huang C Y, Li W Y, Hsiao Y H, Gao W N, and Chen C J 2020 Smart Mater. Struct. 29 115019
[29] Liu Z, Wang X, Liu Y Y, Guo D Y, Li S, Yan Z Y, Tan C K, Li W J, Li P G, and Tang W H 2019 J. Mater. Chem. C 7 13920
[30] Jia B, Zhang C, Liu M, Li Z, Wang J, Zhong L, Han C Y, Qin M, and Huang X D 2023 Nat. Commun. 14 5330
Related articles from Frontiers Journals
[1] Yu-Xuan Liu, Ke-Xin Huang, Yu-Ming Bai, Zhe Yang, and Jun-Lin Li. A High-Randomness and High-Stability Electronic Quantum Random Number Generator without Post Processing[J]. Chin. Phys. Lett., 2023, 40(7): 068501
[2] Xinhuang Lin, Haotian Long, Shuo Ke, Yuyuan Wang, Ying Zhu, Chunsheng Chen, Changjin Wan, and Qing Wan. Indium-Gallium-Zinc-Oxide-Based Photoelectric Neuromorphic Transistors for Spiking Morse Coding[J]. Chin. Phys. Lett., 2022, 39(6): 068501
[3] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes[J]. Chin. Phys. Lett., 2020, 37(6): 068501
[4] Lin-Lin Su , Dong Zhou, Qing Liu , Fang-Fang Ren , Dun-Jun Chen , Rong Zhang , You-Dou Zheng , Hai Lu. Effect of a Single Threading Dislocation on Electrical and Single Photon Detection Characteristics of 4H-SiC Ultraviolet Avalanche Photodiodes *[J]. Chin. Phys. Lett., 0, (): 068501
[5] Jin-Lei Lu, Chen Yue, Xuan-Zhang Li, Wen-Xin Wang, Hai-Qiang Jia, Hong Chen, Lu Wang. Numerical and Experimental Study on the Device Geometry Dependence of Performance of Heterjunction Phototransistors[J]. Chin. Phys. Lett., 2019, 36(10): 068501
[6] Sheng Cao, Xiao-Ming Wu, Jun-Lin Liu, Feng-Yi Jiang. Carrier Dynamics Determined by Carrier-Phonon Coupling in InGaN/GaN Multiple Quantum Well Blue Light Emitting Diodes[J]. Chin. Phys. Lett., 2019, 36(2): 068501
[7] Guang-Yue Shen, Tian-Xiang Zheng, Bing-Cheng Du, Yang Lv, E Wu, Zhao-Hui Li, Guang Wu. Near-Range Large Field-of-View Three-Dimensional Photon-Counting Imaging with a Single-Pixel Si-Avalanche Photodiode[J]. Chin. Phys. Lett., 2018, 35(11): 068501
[8] Qing-feng Wu, Sheng Cao, Chun-lan Mo, Jian-li Zhang, Xiao-lan Wang, Zhi-jue Quan, Chang-da Zheng, Xiao-ming Wu, Shuan Pan, Guang-xu Wang, Jie Ding, Long-quan Xu, Jun-lin Liu, Feng-yi Jiang. Effects of Hydrogen Treatment in Barrier on the Electroluminescence of Green InGaN/GaN Single-Quantum-Well Light-Emitting Diodes with V-Shaped Pits Grown on Si Substrates[J]. Chin. Phys. Lett., 2018, 35(9): 068501
[9] Xiang Zhang, Yu-Dong Li, Lin Wen, Dong Zhou, Jie Feng, Lin-Dong Ma, Tian-Hui Wang, Yu-Long Cai, Zhi-Ming Wang, Qi Guo. Radiation Effects Due to 3MeV Proton Irradiations on Back-Side Illuminated CMOS Image Sensors[J]. Chin. Phys. Lett., 2018, 35(7): 068501
[10] Yin Tang, Qing Cai, Lian-Hong Yang, Ke-Xiu Dong, Dun-Jun Chen, Hai Lu, Rong Zhang, You-Dou Zheng. High-Gain N-Face AlGaN Solar-Blind Avalanche Photodiodes Using a Heterostructure as Separate Absorption and Multiplication Regions[J]. Chin. Phys. Lett., 2017, 34(1): 068501
[11] Xiao-Peng Lv, Hui Wang, Ling-Qiang Meng, Xiao-Fang Wei, Yong-Zhen Chen, Xiang-Bin Kong, Jian-Jun Liu, Jian-Xin Tang, Peng-Fei Wang, Ying Wang. High Efficiency and Stable Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescence Emitter[J]. Chin. Phys. Lett., 2016, 33(08): 068501
[12] LIU Fei, ZHOU Dong, LU Hai, CHEN Dun-Jun, REN Fang-Fang, ZHANG Rong, ZHENG You-Dou. Passive Quenching Electronics for Geiger Mode 4H-SiC Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(12): 068501
[13] LIU Fei, YANG Sen, ZHOU Dong, LU Hai, ZHANG Rong, ZHENG You-Dou. Discrimination Voltage and Overdrive Bias Dependent Performance Evaluation of Passively Quenched SiC Single-Photon-Counting Avalanche Photodiodes[J]. Chin. Phys. Lett., 2015, 32(08): 068501
[14] YUAN Li, WU Can, ZHANG Zhao-Hua, REN Tian-Ling. A Silicon-Based Positive-Intrinsic-Negative Photodetector Double Linear Array on a Thick Intrinsic Epitaxial Layer[J]. Chin. Phys. Lett., 2014, 31(05): 068501
[15] LI Lian-Bi, CHEN Zhi-Ming, REN Zhan-Qiang, GAO Zhan-Jun. Non-UV Photoelectric Properties of the Ni/n-Si/N+-SiC Isotype Heterostructure Schottky Barrier Photodiode[J]. Chin. Phys. Lett., 2013, 30(9): 068501
Viewed
Full text


Abstract