CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Photodoping-Modified Charge Density Wave Phase Transition in WS$_{{2}}$/1T-TaS$_{2}$ Heterostructure |
Rui Wang1,2†, Jianwei Ding2,4†, Fei Sun5, Jimin Zhao3,4,6*, and Xiaohui Qiu2,4* |
1Beijing Information Technology College, Beijing 100015, China 2CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China 3Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China 4University of Chinese Academy of Sciences, Beijing 100049, China 5Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany 6Songshan Lake Materials Laboratory, Dongguan 523808, China
|
|
Cite this article: |
Rui Wang, Jianwei Ding, Fei Sun et al 2024 Chin. Phys. Lett. 41 057801 |
|
|
Abstract Controlling collective electronic states hold great promise for development of innovative devices. Here, we experimentally detect the modification of the charge density wave (CDW) phase transition within a 1T-TaS$_{{2}}$ layer in a WS$_{{2}}$/1T-TaS$_{{2}}$ heterostructure using time-resolved ultrafast spectroscopy. Laser-induced charge transfer doping strongly suppresses the commensurate CDW phase, which results in a significant decrease in both the phase transition temperature ($T_{\rm c}$) and phase transition stiffness. We interpret the phenomenon that photo-induced hole doping, when surpassing a critical threshold value of $\sim$ $10^{18}$ cm$^{-3}$, sharply decreases the phase transition energy barrier. Our results provide new insights into controlling the CDW phase transition, paving the way for optical-controlled novel devices based on CDW materials.
|
|
Received: 06 March 2024
Published: 23 May 2024
|
|
PACS: |
71.45.Lr
|
(Charge-density-wave systems)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
78.47.jg
|
(Time resolved reflection spectroscopy)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
|
|
|
[1] | Tsen A W, Hovden R, Wang D et al. 2015 Proc. Natl. Acad. Sci. USA 112 15054 |
[2] | Yoshida M, Suzuki R, Zhang Y, Nakano M, and Iwasa Y 2015 Sci. Adv. 1 e1500606 |
[3] | Liu G, Debnath B, Pope T R, Salguero T T, Lake R K, and Balandin A A 2016 Nat. Nanotechnol. 11 845 |
[4] | Yu Y J, Yang F Y, Lu X F et al. 2015 Nat. Nanotechnol. 10 270 |
[5] | Hollander M J, Liu Y, Lu W J, Li L J, Sun Y P, Robinson J A, and Datta S 2015 Nano Lett. 15 1861 |
[6] | Wen W, Zhu Y, Dang C, Chen W, and Xie L 2019 Nano Lett. 19 1805 |
[7] | Hasaien J Z L, Wu Y L, Shi M Z, Zhai Y N, Wu Q, Liu Z, Zhou Y, Chen X H, and Zhao J M 2024 submitted |
[8] | Zhu C, Chen Y, Liu F C et al. 2018 ACS Nano 12 11203 |
[9] | Li W and Naik G V 2020 Nano Lett. 20 7868 |
[10] | Shao D F, Xiao R C, Lu W J, Lv H Y, Li J Y, Zhu X B, and Sun Y P 2016 Phys. Rev. B 94 125126 |
[11] | Mohammadzadeh A, Baraghani S, Yin S, Kargar F, Bird J P, and Balandin A A 2021 Appl. Phys. Lett. 118 093102 |
[12] | Jarach Y, Rodes L, Ber E, Yalon E, and Kanigel A 2022 Appl. Phys. Lett. 120 083502 |
[13] | Svetin D, Vaskivskyi I, Sutar P, Goreshnik E, Gospodaric J, Mertelj T, and Mihailovic D 2014 Appl. Phys. Express 7 103201 |
[14] | Gan L Y, Zhang L H, Zhang Q Y, Guo C S, Schwingenschlögl U, and Zhao Y 2016 Phys. Chem. Chem. Phys. 18 3080 |
[15] | Zhao R, Wang Y, Deng D, Luo X, Lu W J, Sun Y P, Liu Z K, Chen L Q, and Robinson J 2017 Nano Lett. 17 3471 |
[16] | Bu K, Zhang W, Fei Y, Wu Z, Zheng Y, Gao J, Luo X, Sun Y P, and Yin Y 2019 Commun. Phys. 2 146 |
[17] | Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, and Kis A 2017 Nat. Rev. Mater. 2 17033 |
[18] | Wang Z, Chu L, Li L, Yang M, Wang J, Eda G, and Loh K P 2019 Nano Lett. 19 2840 |
[19] | Chen Y, Wu L S, Xu H et al. 2020 Adv. Mater. 32 2003746 |
[20] | Fu W, Qiao J S, Zhao X X et al. 2020 ACS Nano 14 3917 |
[21] | Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, and Li S C 2022 Nat. Mater. 21 284 |
[22] | Szałowski K, Milivojević M, Kochan D, and Gmitra M 2023 2D Mater. 10 025013 |
[23] | Lutsyk I, Szalowski K, Krukowski P et al. 2023 Nano Res. 16 11528 |
[24] | Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X, and Zhao J M 2020 Chin. Phys. Lett. 37 097802 |
[25] | Hao W J, Gu M H, Tian Z Y, Fu S H, Meng M, Zhang H, Guo J D, and Zhao J M 2024 Adv. Sci. 11 2305900 |
[26] | Wang K, Huang B, Tian M K et al. 2016 ACS Nano 10 6612 |
[27] | Liu H L, Shen C C, Su S H, Hsu C L, Li M Y, and Li L J 2014 Appl. Phys. Lett. 105 201905 |
[28] | Wang R, Zhou J B, Wang X S, Xie L M, Zhao J M, and Qiu X H 2021 Nano Res. 14 1162 |
[29] | Demsar J, Biljaković K, and Mihailovic D 1999 Phys. Rev. Lett. 83 800 |
[30] | Warawa K, Christophel N, Sobolev S, Demsar J, Roskos H G, and Thomson M D 2023 Phys. Rev. B 108 045147 |
[31] | Toda Y, Tateishi K, and Tanda S 2004 Phys. Rev. B 70 033106 |
[32] | Yusupov R V, Mertelj T, Chu J H, Fisher I R, and Mihailovic D 2008 Phys. Rev. Lett. 101 246402 |
[33] | Demsar J, Forró L, Berger H, and Mihailovic D 2002 Phys. Rev. B 66 041101 |
[34] | Dardel B, Grioni M, Malterre D, Weibel P, Baer Y, and Lévy F 1992 Phys. Rev. B 46 7407 |
[35] | Kabanov V V, Demsar J, Podobnik B, and Mihailovic D 1999 Phys. Rev. B 59 1497 |
[36] | Kozawa D, Carvalho A, Verzhbitskiy I, Giustiniano F, Miyauchi Y, Mouri S, Neto A H C, Matsuda K, and Eda G 2016 Nano Lett. 16 4087 |
[37] | Inada R, Ōnuki Y, and Tanuma S 1979 Phys. Lett. 69 453 |
[38] | Yoshida M, Zhang Y, Ye J, Suzuki R, Imai Y, Kimura S, Fujiwara A, and Iwasa Y 2014 Sci. Rep. 4 7302 |
[39] | Dang C, Guan M, Hussain S, Wen W, Zhu Y, Jiao L, Meng S, and Xie L 2020 Nano Lett. 20 6725 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|