Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057503    DOI: 10.1088/0256-307X/41/5/057503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Current-Induced Magnetization Switching Behavior in Perpendicular Magnetized ${\rm L1_{0}}$-MnAl/B2-CoGa Bilayer
Hong-Li Sun1,2, Rong-Kun Han1,2, Hong-Rui Qin1,2, Xu-Peng Zhao3, Zhi-Cheng Xie1,2, Da-Hai Wei1,2, and Jian-Hua Zhao1,2*
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
3International School of Microelectronics, Dongguan University of Technology, Dongguan 523808, China
Cite this article:   
Hong-Li Sun, Rong-Kun Han, Hong-Rui Qin et al  2024 Chin. Phys. Lett. 41 057503
Download: PDF(999KB)   PDF(mobile)(1037KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Rare-earth-free Mn-based binary alloy ${\rm L1_{0}}$-MnAl with bulk perpendicular magnetic anisotropy (PMA) holds promise for high-performance magnetic random access memory (MRAM) devices driven by spin-orbit torque (SOT). However, the lattice-mismatch issue makes it challenging to place conventional spin current sources, such as heavy metals, between ${\rm L1_{0}}$-MnAl layers and substrates. In this work, we propose a solution by using the B2-CoGa alloy as the spin current source. The lattice-matching enables high-quality epitaxial growth of 2-nm-thick ${\rm L1_{0}}$-MnAl on B2-CoGa, and the ${\rm L1_{0}}$-MnAl exhibits a large PMA constant of $1.04\times 10^{6}$ J/m$^{3}$. Subsequently, the considerable spin Hall effect in B2-CoGa enables the achievement of SOT-induced deterministic magnetization switching. Moreover, we quantitatively determine the SOT efficiency in the bilayer. Furthermore, we design an ${\rm L1_{0}}$-MnAl/B2-CoGa/Co$_{2}$MnGa structure to achieve field-free magnetic switching. Our results provide valuable insights for achieving high-performance SOT-MRAM devices based on ${\rm L1_{0}}$-MnAl alloy.
Received: 20 March 2024      Published: 23 May 2024
PACS:  75.47.Np (Metals and alloys)  
  75.30.Gw (Magnetic anisotropy)  
  72.25.Mk (Spin transport through interfaces)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hong-Li Sun
Rong-Kun Han
Hong-Rui Qin
Xu-Peng Zhao
Zhi-Cheng Xie
Da-Hai Wei
and Jian-Hua Zhao
[1] Zhang H C, Ma X Y, Jiang C P, Yin J L, Lyu S Q, Lu S Y, Shang X T, Man B W, Zhang C, Li D D, Li S H, Chen W J, Liu H X, Wang G F, Cao K H, Wang Z H, and Zhao W S 2022 J. Semicond. 43 102501
[2] Zhao Y, Yang J, Li B, Cheng X, Ye X, Wang X, Jia X, Wang Z, Zhang Y, and Zhao W 2023 Sci. Chin. Inf. Sci. 66 142401
[3] Apalkov D, Khvalkovskiy A, Watts S, Nikitin V, Tang X, Lottis D, Moon K, Luo X, Chen E, Ong A, Driskill-Smith A, and Krounbi M 2013 ACM J. Emerging Technol. Comput. Syst. 9 13
[4] Li Y, Kang W, Zhou K, Qiu K, and Zhao W 2023 ACM Trans. Embed. Comput. Syst. 22 29
[5] Seo Y and Kwon K W 2023 Electronics 12 4223
[6] de Orio R L, Makarov A, Selberherr S, Goes W, Ender J, Fiorentini S, and Sverdlov V 2020 Solid-State Electron. 168 107730
[7] Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, and Buhrman R A 2012 Science 336 555
[8] Zhang S 2000 Phys. Rev. Lett. 85 393
[9] Hirsch J E 1999 Phys. Rev. Lett. 83 1834
[10] Edelstein V M 1990 Solid State Commun. 73 233
[11] Liu L, Lee O J, Gudmundsen T J, Ralph D C, and Buhrman R A 2012 Phys. Rev. Lett. 109 096602
[12] Lee O J, Liu L Q, Pai C F, Li Y, Tseng H W, Gowtham P G, Park J P, Ralph D C, and Buhrman R A 2014 Phys. Rev. B 89 024418
[13] Lau Y C, Betto D, Rode K, Coey J M D, and Stamenov P 2016 Nat. Nanotechnol. 11 758
[14] Sheng Y, Edmonds K W, Ma X, Zheng H, and Wang K 2018 Adv. Electron. Mater. 4 1800224
[15] Chen T Y, Chan H I, Liao W B, and Pai C F 2018 Phys. Rev. Appl. 10 044038
[16] Li Y, Zhao X, Liu W, Wu J, Liu L, Song Y, Ma J, and Zhang Z 2023 Appl. Phys. Lett. 123 032403
[17] Fukami S, Zhang C, DuttaGupta S, Kurenkov A, and Ohno H 2016 Nat. Mater. 15 535
[18] Choi W C, Yoon S, Kim H J, Ha J H, Park K J, Baek E, Kim D R, Shin Y, You C Y, Kim J W, and Hong J I 2023 APL Mater. 11 121115
[19] Ma Q, Li Y, Gopman D B, Kabanov Y P, Shull R D, and Chien C L 2018 Phys. Rev. Lett. 120 117703
[20] Hamamoto K, Ezawa M, Kim K W, Morimoto T, and Nagaosa N 2017 Phys. Rev. B 95 224430
[21] Han R K, Zhao X P, Qin H R, Sun H L, Wang H L, Wei D H, and Zhao J H 2023 Phys. Rev. B 107 134422
[22] Zhang K, Chen L, Zhang Y, Hong B, He Y, Lin K, Zhang Z, Zheng Z, Feng X, Zhang Y, Otani Y, and Zhao W 2022 Appl. Phys. Rev. 9 011407
[23] Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, and Zhao W S 2018 Nat. Electron. 1 582
[24] You Y, Bai H, Feng X, Fan X, Han L, Zhou X, Zhou Y, Zhang R, Chen T, Pan F, and Song C 2021 Nat. Commun. 12 6524
[25] Kondou K, Chen H, Tomita T, Ikhlas M, Higo T, MacDonald A H, Nakatsuji S, and Otani Y 2021 Nat. Commun. 12 6491
[26] Wang X R 2021 Commun. Phys. 4 55
[27] Zhu L J, Nie S H, Meng K K, Pan D, Zhao J H, and Zheng H Z 2012 Adv. Mater. 24 4547
[28] El-Gendy A A and Hadjipanayis G 2015 J. Phys. D 48 125001
[29] Park J H, Hong Y K, Bae S, Lee J J, Jalli J, Abo G S, Neveu N, Kim S G, Choi C J, and Lee J G 2010 J. Appl. Phys. 107 09A731
[30] Nie S H, Zhu L J, Lu J, Pan D, Wang H L, Yu X Z, Xiao J X, and Zhao J H 2013 Appl. Phys. Lett. 102 152405
[31] Nie S H, Zhu L J, Pan D, Lu J, and Zhao J H 2013 Acta Phys. Sin. 62 178103 (in Chinese)
[32] Mao S W, Lu J, Yang L, Ruan X Z, Wang H L, Wei D H, Xu Y B, and Zhao J H 2020 Chin. Phys. Lett. 37 058501
[33] Sakuma A 1994 J. Phys. Soc. Jpn. 63 1422
[34] Mizukami S, Wu F, Sakuma A, Walowski J, Watanabe D, Kubota T, Zhang X, Naganuma H, Oogane M, Ando Y, and Miyazaki T 2011 Phys. Rev. Lett. 106 117201
[35] Sakuma A 1998 J. Magn. Magn. Mater. 187 105
[36] Yang Z X, Li J, Wang D s, Zhang K M, and Xie X D 1998 J. Magn. Magn. Mater. 182 369
[37] Zhang X, Tao L L, Zhang J, Liang S H, Jiang L, and Han X F 2017 Appl. Phys. Lett. 110 252403
[38] Ranjbar R, Suzuki K Z, Sasaki Y, Bainsla L, and Mizukami S 2016 Jpn. J. Appl. Phys. 55 120302
[39] Meng K, Miao J, Xu X, Wu Y, Xiao J, Zhao J, and Jiang Y 2016 Sci. Rep. 6 38375
[40] Zhao X P, Sun H L, Tong S C, Han R K, Qin H R, and Zhao J H 2023 Appl. Phys. Lett. 123 042407
[41] Zhao X P, Lu J, Mao S W, Yu Z F, Wei D H, and Zhao J H 2019 Appl. Phys. Lett. 115 142405
[42] Meng K K, Miao J, Xu X G, Wu Y, Zhao X P, Zhao J H, and Jiang Y 2017 Appl. Phys. Lett. 110 142401
[43] Oshima D, Kato T, and Iwata S 2020 AIP Adv. 10 025012
[44] Suzuki K Z, Ranjbar R, Sugihara A, Miyazaki T, and Mizukami S 2016 Jpn. J. Appl. Phys. 55 010305
[45] Lau Y C, Lee H, Qu G X, Nakamura K, and Hayashi M 2019 Phys. Rev. B 99 064410
[46] Takikawa M, Suzuki K Z, Ranjbar R, and Mizukami S 2017 Appl. Phys. Express 10 073004
[47] Mizukami S, Suzuki K Z, and Miura Y 2019 Appl. Phys. Express 12 043003
[48] Sands T, Harbison J P, Leadbeater M L, Allen S J, Hull G W, Ramesh R, and Keramidas V G 1990 Appl. Phys. Lett. 57 2609
[49] Takeuchi Y, Okuda R, Igarashi J, Jinnai B, Saino T, Ikeda S, Fukami S, and Ohno H 2022 Appl. Phys. Lett. 120 052404
[50] Deng Y, Yang M, Ji Y, and Wang K 2020 J. Magn. Magn. Mater. 496 165920
[51] Damsgaard C D, Hickey M C, Holmes S N, Feidenhans'l R, Mariager S O, Jacobsen C S, and Hansen J B 2009 J. Appl. Phys. 105 124502
[52] Tang K, Wen Z, Lau Y C, Sukegawa H, Seki T, and Mitani S 2021 Appl. Phys. Lett. 118 062402
[53] Bass J and Pratt W P 2007 J. Phys.: Condens. Matter 19 183201
[54] Safi T S, Chou C T, Hou J T, Han J, and Liu L 2022 Appl. Phys. Lett. 121 092404
[55] Aoki M, Yin Y, Granville S, Zhang Y, Medhekar N V, Leiva L, Ohshima R, Ando Y, and Shiraishi M 2023 Nano Lett. 23 6951
[56] Zhao X, Sun H, Han R, Qin H, Wen L, Wang H, Wei D, and Zhao J 2024 APL Mater. 12 041103
[57] Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G, and Lee K J 2018 Nat. Mater. 17 509
[58] Hibino Y, Taniguchi T, Yakushiji K, Fukushima A, Kubota H, and Yuasa S 2021 Nat. Commun. 12 6254
Related articles from Frontiers Journals
[1] Jianli Bai, Qingxin Dong, Libo Zhang, Qiaoyu Liu, Jingwen Cheng, Pinyu Liu, Cundong Li, Yingrui Sun, Yu Huang, Zhian Ren, and Genfu Chen. Highly Anisotropic Magnetism and Nearly Isotropic Magnetocaloric Effect in Mn$_{3}$Sn$_{2}$ Single Crystals[J]. Chin. Phys. Lett., 2023, 40(12): 057503
[2] Qi Wang, Qianheng Du, Cedomir Petrovic, Hechang Lei. Physical Properties of Half-Heusler Antiferromagnet MnPtSn Single Crystal[J]. Chin. Phys. Lett., 2020, 37(2): 057503
[3] LIU Li-Hu, GU Jian-Jun, , LI Hai-Tao, , CAI Ning, SUN Hui-Yuan,. Synthesis and Characteristics of Electrodeposited CoxZn1-x Nanorods[J]. Chin. Phys. Lett., 2010, 27(6): 057503
[4] HUANG Chang-Hong, MA Li, CHEN Zhi-Quan, WANG Zhu, WANG Xiao-Wei, ZHANG Hong-Yan. An Experimental Study of Mg Aggregation in AA5754 Alloys byPositron Annihilation Spectroscopy[J]. Chin. Phys. Lett., 2007, 24(2): 057503
[5] WANG Yan-Guo, WANG Hai-Ying, DAI Xue-Fang, WU Guang-Heng, DUAN Xiao-Feng. Giant Magneto-Impedance of Co50Ni22Ga28 Alloy with High Chemical Ordering[J]. Chin. Phys. Lett., 2005, 22(10): 057503
[6] Tatiana S. Kostiuchenko, Alexander V. Shapeev, and Ivan S. Novikov. Interatomic Interaction Models for Magnetic Materials: Recent Advances[J]. Chin. Phys. Lett., 2024, 41(6): 057503
Viewed
Full text


Abstract