CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures |
Xinxin Jiang1, Zhikuan Wang1, Chong Li2, Xuelian Sun1, Lei Yang1, Dongmei Li1*, Bin Cui1*, and Desheng Liu1* |
1School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan 250100, China 2School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
|
|
Cite this article: |
Xinxin Jiang, Zhikuan Wang, Chong Li et al 2024 Chin. Phys. Lett. 41 057501 |
|
|
Abstract Electrical control of magnetism in van der Waals semiconductors is a promising step towards development of two-dimensional spintronic devices with ultralow power consumption for processing and storing information. Here, we propose a design for two-dimensional van der Waals heterostructures (vdWHs) that can host ferroelectricity and ferromagnetism simultaneously under hole doping. By contacting an InSe monolayer and forming an InSe/In$_{2}$Se$_{3}$ vdWH, the switchable built-in electric field from the reversible out-of-plane polarization enables robust control of the band alignment. Furthermore, switching between the two ferroelectric states ($P_\uparrow$ and $P_\downarrow$) of hole-doped In$_{2}$Se$_{3}$ with an external electric field can interchange the ON and OFF states of the nonvolatile magnetism. More interestingly, doping concentration and strain can effectively tune the magnetic moment and polarization energy. Therefore, this provides a platform for realizing multiferroics in ferroelectric heterostructures, showing great potential for use in nonvolatile memories and ferroelectric field-effect transistors.
|
|
Received: 14 February 2024
Editors' Suggestion
Published: 28 May 2024
|
|
PACS: |
31.15.A-
|
(Ab initio calculations)
|
|
32.10.Dk
|
(Electric and magnetic moments, polarizabilities)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
|
|
|
[1] | Gong C, Li L, Li Z L et al. 2017 Nature 546 265 |
[2] | Huang B, Clark G, Navarro-Moratalla E et al. 2017 Nature 546 270 |
[3] | Deng Y J, Yu Y J, Song Y C et al. 2018 Nature 563 94 |
[4] | Yu W, Li J, Herng T S et al. 2019 Adv. Mater. 31 1903779 |
[5] | Wolf S A, Awschalom D D, Buhrman R A et al. 2001 Science 294 1488 |
[6] | Jiang X X, Gao Q, Xu X H et al. 2021 Phys. Chem. Chem. Phys. 23 21641 |
[7] | Li C, Sun X Y, Yuan P F et al. 2024 Phys. Lett. A 504 129435 |
[8] | Li C, Wang F, Cui B, Pan Z F, and Jia Y 2023 J. Phys.: Condens. Matter 35 295801 |
[9] | Song C, Cui B, Li F, Zhou X, and Pan F 2017 Prog. Mater. Sci. 87 33 |
[10] | Yan Y N, Zhou X J, Li F et al. 2015 Appl. Phys. Lett. 107 122407 |
[11] | Li L J, O'Farrell E C T, Loh K P et al. 2016 Nature 529 185 |
[12] | Xi X, Berger H, Forró L, Shan J, and Mak K F 2016 Phys. Rev. Lett. 117 106801 |
[13] | Zhang X, Lu Y, and Chen L 2023 Chin. Phys. Lett. 40 067701 |
[14] | Wang Y, Lei Z Z, Zhang J S et al. 2023 Chin. Phys. Lett. 40 117102 |
[15] | Zhang W, Wu S Y, Li L, and Chen X M 2013 Chin. Phys. Lett. 30 057701 |
[16] | Wurfel P and Batra I P 1973 Phys. Rev. B 8 5126 |
[17] | Chang K, Liu J W, Lin H C et al. 2016 Science 353 274 |
[18] | Liu F C, You L, Seyler K L et al. 2016 Nat. Commun. 7 12357 |
[19] | Chandrasekaran A, Mishra A, and Singh A K 2017 Nano Lett. 17 3290 |
[20] | Zhou Y, Wu D, Zhu Y H et al. 2017 Nano Lett. 17 5508 |
[21] | Ding W J, Zhu J B, Wang Z et al. 2017 Nat. Commun. 8 14956 |
[22] | Xiao J, Zhu H Y, Wang Y et al. 2018 Phys. Rev. Lett. 120 227601 |
[23] | Xue F, Hu W J, Lee K C et al. 2018 Adv. Funct. Mater. 28 1803738 |
[24] | Xu M L, Huang C X, Li Y W et al. 2020 Phys. Rev. Lett. 124 067602 |
[25] | Lu C L, Wu M H, Lin L, and Liu J M 2019 Natl. Sci. Rev. 6 653 |
[26] | Liu C, Guan S, Yin H B et al. 2019 Appl. Phys. Lett. 115 252904 |
[27] | Hua C Q, Bai H, Zheng Y et al. 2021 Chin. Phys. Lett. 38 077501 |
[28] | Hill N A 2000 J. Phys. Chem. B 104 6694 |
[29] | Xu R, Liu S, Saremi S et al. 2019 Nat. Commun. 10 1282 |
[30] | Seixas L, Rodin A S, Carvalho A, and Castro Neto A H 2016 Phys. Rev. Lett. 116 206803 |
[31] | Peng H W, Xiang H J, Wei S H et al. 2009 Phys. Rev. Lett. 102 017201 |
[32] | Nie Y Z, Rahman M, Liu P et al. 2017 Phys. Rev. B 96 075401 |
[33] | Miao N, Xu B, Bristowe N C, Zhou J, and Sun Z 2017 J. Am. Chem. Soc. 139 11125 |
[34] | Jiang X X, Zuo X, Han L et al. 2020 Comput. Mater. Sci. 183 109799 |
[35] | Cao T, Li Z, and Louie S G 2015 Phys. Rev. Lett. 114 236602 |
[36] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[37] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[38] | Grimme S 2006 J. Comput. Chem. 27 1787 |
[39] | Bengtsson L 1999 Phys. Rev. B 59 12301 |
[40] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 |
[41] | Zhou J D, Zeng Q S, Lv D H et al. 2015 Nano Lett. 15 6400 |
[42] | Lee Y, Pisoni R, Overweg H et al. 2018 2D Mater. 5 035040 |
[43] | See the Supplemental Material for crystal structures, stability calculations, Monte Carlo simulation, and additional data. |
[44] | Sun C, Xiang H, Xu B et al. 2016 Appl. Phys. Express 9 035203 |
[45] | Li X T, Zuo X, Li H M et al. 2019 Phys. Chem. Chem. Phys. 21 19234 |
[46] | Fei Z Y, Zhao W J, Palomaki T A et al. 2018 Nature 560 336 |
[47] | Zhao Y, Zhang J J, Yuan S, and Chen Z 2019 Adv. Funct. Mater. 29 1901420 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|