Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057502    DOI: 10.1088/0256-307X/41/5/057502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Combined Effect of Spin-Transfer Torque and Voltage-Controlled Strain Gradient on Magnetic Domain-Wall Dynamics: Toward Tunable Spintronic Neuron
Guo-Liang Yu1,2*, Xin-Yan He1, Sheng-Bin Shi3, Yang Qiu1,2, Ming-Min Zhu1,2, Jia-Wei Wang1,2, Yan Li1,2, Yuan-Xun Li4, Jie Wang3*, and Hao-Miao Zhou1,2*
1College of Information Engineering, China Jiliang University, Hangzhou 310018, China
2The Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province, Hangzhou 310018, China
3Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
4School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Cite this article:   
Guo-Liang Yu, Xin-Yan He, Sheng-Bin Shi et al  2024 Chin. Phys. Lett. 41 057502
Download: PDF(1842KB)   PDF(mobile)(2031KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Magnetic domain wall (DW), as one of the promising information carriers in spintronic devices, have been widely investigated owing to its nonlinear dynamics and tunable properties. Here, we theoretically and numerically demonstrate the DW dynamics driven by the synergistic interaction between current-induced spin-transfer torque (STT) and voltage-controlled strain gradient (VCSG) in multiferroic heterostructures. Through electromechanical and micromagnetic simulations, we show that a desirable strain gradient can be created and it further modulates the equilibrium position and velocity of the current-driven DW motion. Meanwhile, an analytical Thiele's model is developed to describe the steady motion of DW and the analytical results are quite consistent with the simulation data. Finally, we find that this combination effect can be leveraged to design DW-based biological neurons where the synergistic interaction between STT and VCSG-driven DW motion as integrating and leaking motivates mimicking leaky-integrate-and-fire (LIF) and self-reset function. Importantly, the firing response of the LIF neuron can be efficiently modulated, facilitating the exploration of tunable activation function generators, which can further help improve the computational capability of the neuromorphic system.
Received: 21 January 2024      Published: 11 May 2024
PACS:  75.60.Ch (Domain walls and domain structure)  
  75.78.Cd (Micromagnetic simulations ?)  
  75.85.+t (Magnetoelectric effects, multiferroics)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057502       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guo-Liang Yu
Xin-Yan He
Sheng-Bin Shi
Yang Qiu
Ming-Min Zhu
Jia-Wei Wang
Yan Li
Yuan-Xun Li
Jie Wang
and Hao-Miao Zhou
[1] Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190
[2] Bahri M A, Hinaai M A, and Harthy T A 2023 Chin. Phys. B 32 127508
[3] Allwood D A, Xiong G, Faulkner C C, Atkinson D, Petit D, and Cowburn R P 2005 Science 309 1688
[4] Luo Z C, Hrabec A, Dao T P, Sala G, Finizio S, Feng J X, Mayr S, Raabe J, Gambardella P, and Heyderman L J 2020 Nature 579 214
[5] Lin H, Xu N, Wang D, Liu L, Zhao X, Zhou Y, Luo X, Song C, Yu G, and Xing G 2022 Adv. Intell. Syst. 4 2200028
[6] Sato N, Schultheiss K, Körber L, Puwenberg N, Mühl T, Awad A A, Arekapudi S S P K, Hellwig O, Fassbender J, and Schultheiss H 2019 Phys. Rev. Lett. 123 057204
[7] Cheng M, Yuan X, Li S, Chen C, Zhang Z, Yu Z, Liu Y, Lu Z, and Xiong R 2020 Nanotechnology 31 235201
[8] Wang D, Wang Z, Jiang S, Liu L, Lin H, Zhang Y, Tang R, Luo X, and Xing G 2023 Mater. Today Electron. 6 100065
[9] Sharad M, Augustine C, Panagopoulos G, and Roy K 2012 IEEE Trans. Nanotechnol. 11 843
[10] Kaushik D, Singh U, Sahu U, Sreedevi I, and Bhowmik D 2020 AIP Adv. 10 025111
[11] Hong J, Li X, Xu N, Chen H, Cabrini S, Khizroev S, Bokor J, and You L 2020 Adv. Intell. Syst. 2 2000143
[12] Wang C, Wang Z, Wang M, Zhang X, Zhang Y, and Zhao W 2020 IEEE Trans. Electron Devices 67 2621
[13] Liu S, Bennett C, Friedman J, Marinella M, Paydarfar D, and Incorvia J A 2021 IEEE Magn. Lett. 12 1
[14] Mah W L W, Kumar D, Jin T, and Piramanayagam S N 2021 J. Magn. Magn. Mater. 537 168131
[15] Vernier N, Allwood D A, Atkinson D, Cooke M D, and Cowburn R P 2004 Europhys. Lett. 65 526
[16] Thiaville A, Nakatani Y, Miltat J, and Vernier N 2004 J. Appl. Phys. 95 7049
[17] Wang X R, Yan P, Lu J, and He C 2009 Ann. Phys. 324 1815
[18] Chen C, Piao H G, Shim J H, Pan L Q, and Kim D H 2015 Chin. Phys. Lett. 32 087502
[19] Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, and Qin M H 2022 Rare Met. 41 3815
[20] Sohn H, Nowakowski M E, Liang C Y, Hockel J L, Wetzlar K, Keller S, McLellan B M, Marcus M A, Doran A, Young A, Kläui M, Carman G P, Bokor J, and Candler R N 2015 ACS Nano 9 4814
[21] Wang X S, Yan P, Shen Y H, Bauer G E W, and Wang X R 2012 Phys. Rev. Lett. 109 167209
[22] Dean J, Bryan M T, Cooper J D, Virbule A, Cunningham J E, and Hayward T J 2015 Appl. Phys. Lett. 107 142405
[23] Fattouhi M, Garcia-Sanchez F, Yanes R, Raposo V, Martinez E, and Lopez-Diaz L 2022 Phys. Rev. Appl. 18 044023
[24] Kim D H, Moon K W, Yoo S C, Min B C, Shin K H, and Choe S B 2013 IEEE Trans. Magn. 49 3207
[25] Liu S, Xiao T P, Cui C, Incorvia J A C, Bennett C H, and Marinella M J 2021 Appl. Phys. Lett. 118 202405
[26] Lone A H, Li H R, El-Atab N, Setti G, and Fariborzi H 2023 IEEE Trans. Electron Devices 70 6293
[27] Wang D, Tang R F, Lin H, Liu L, Xu N, Sun Y, Zhao X F, Wang Z W, Wang D D, Mai Z H, Zhou Y J, Gao N, Song C, Zhu L J, Wu T, Liu M, and Xing G Z 2023 Nat. Commun. 14 1068
[28] Zhang Z, Sun J, Zheng Z, Lin K, Zhang K, Wang J, Zhang Y, Zhao W, and Zhang Y 2022 IEEE Electron Device Lett. 43 1567
[29] Zhang Z, Lin K, Zhang Y, Bournel A, Xia K, Kläui M, and Zhao W 2023 Sci. Adv. 9 eade7439
[30] Kumar D, Chung H J, Chan J P, Jin T L, Lim S T, Parkin S S P, Sbiaa R, and Piramanayagam S N 2023 ACS Nano 17 6261
[31] Wang D, Wang Z, Xu N, Liu L, Lin H, Zhao X, Jiang S, Lin W, Gao N, Liu M, and Xing G 2022 Adv. Sci. 9 2203006
[32] Bhowmik D, Saxena U, Dankar A, Verma A, Kaushik D, Chatterjee S, and Singh U 2019 J. Magn. Magn. Mater. 489 165434
[33] Sengupta A, Shim Y, and Roy K 2016 IEEE Trans. Biomed. Circuits Syst. 10 1152
[34] Yu Z Y, Shen M K, Zeng Z M, Liang S H, Liu Y, Chen M, Zhang Z H, Lu Z H, You L, Yang X F, Zhang Y, and Xiong R 2020 Nanoscale Adv. 2 1309
[35] Agrawal A and Roy K 2019 IEEE Trans. Magn. 55 1400107
[36] Brigner W H, Hu X, Hassan N, Bennett C H, Incorvia J A C, Garcia-Sanchez F, and Friedman J S 2019 IEEE J. Explor. Solid-State Comput. Devices Circuits 5 19
[37] Brigner W H, Hassan N, Jiang W L, Hu X, Saha D, Bennett C H, Marinella M J, Incorvia J A C, Garcia-Sanchez, and Friedman J S 2019 IEEE Trans. Electron Devices 66 4970
[38] Hassan N, Hu X, Jiang W L, Brigner W H, Akinola O G, Garcia-Sanchez F, Pasquale M, Bennett C H, Incorvia J A C, and Friedman J S 2018 J. Appl. Phys. 124 152127
[39] Wang Y, Xu H, Wang W, Zhang X, Wu Z, Gu R, Li Q, and Liu Q 2022 IEEE Electron Device Lett. 43 631
[40] Guo T, Pan K, Sun B, Wei L, Yan Y, Zhou Y N, and Wu Y A 2021 Mater. Today Adv. 12 100192
[41] Shaban A, Bezugam S S, and Suri M 2021 Nat. Commun. 12 4234
[42] Bryan M T, Dean J, and Allwood D A 2012 Phys. Rev. B 85 144411
[43] Yu G, Shi S, Peng R, Guo R, Qiu Y, Wu G, Li Y, Zhu M, and Zhou H 2022 J. Magn. Magn. Mater. 552 169229
[44] Yu G, He X, Qiu Y, Wu G, Guo R, Zhu M, and Zhou H 2022 AIP Adv. 12 035036
[45] de Araujo C I L, Alves S G, Buda-Prejbeanu L D, and Dieny B 2016 Phys. Rev. Appl. 6 024015
[46] Qiao Y, Zhang Y, and Yuan Z 2023 New J. Phys. 25 033031
[47] Hu J M, Yang T, and Chen L Q 2018 npj Comput. Mater. 4 62
[48] Duflou R, Ciubotaru F, Vaysset A, Heyns M, Sorée B, Radu I P, and Adelmann C 2017 Appl. Phys. Lett. 111 192411
[49] Di K, Zhang V L, Lim H S, Ng S C, Kuok M H, Qiu X, and Yang H 2015 Appl. Phys. Lett. 106 052403
[50] Igarashi J, Llandro J, Sato H, Matsukura F, and Ohno H 2017 Appl. Phys. Lett. 111 132407
[51] Li R, Zhang S, Luo S, Guo Z, Xu Y, Ouyang J, Song M, Zou Q, Xi L, Yang X, Hong J, and You L 2021 Nat. Electron. 4 179
[52] Yu G Q, Wang Z X, Abolfath-Beygi M, He C L, Li X, Wong K L, Nordeen P, Wu H, Carman G P, Han X F, Alhomoudi I A, Amiri P K, and Wang K L 2015 Appl. Phys. Lett. 106 072402
[53] Yang S, Shin J, Kim T, Moon K W, Kim J, Jang G, Hyeon D S, Yang J, Hwang C, Jeong Y, and Hong J P 2021 NPG Asia Mater. 13 11
[54] Chen Y B, Yang X K, Yan T, Wei B, Cui H Q, Li C, Liu J H, Song M X, and Cai L 2020 Chin. Phys. Lett. 37 078501
Related articles from Frontiers Journals
[1] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 057502
[2] Tian-Yi Zhang, Qing Yan, and Qing-Feng Sun. Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators[J]. Chin. Phys. Lett., 2021, 38(7): 057502
[3] Qiuyang Li, Suqin Xiong, Lina Chen, Kaiyuan Zhou, Rongxin Xiang, Haotian Li, Zhenyu Gao, Ronghua Liu, and Youwei Du. Spin-Wave Dynamics in an Artificial Kagome Spin Ice[J]. Chin. Phys. Lett., 2021, 38(4): 057502
[4] Tian-Run Feng, Hui-Zhen Kang, Lei Feng, Jia Yang, Tian-Hao Zhang, Feng Song, Jing-Jun Xu, Jian-Guo Tian, L. I. Ivleva. Noncolinear Second-Harmonic Generation Pairs and Their Scatterings in Nd$^{3+}$:SBN Crystals with Needle-Like Ferroelectric Domains[J]. Chin. Phys. Lett., 2018, 35(3): 057502
[5] CHEN Cheng, PIAO Hong-Guang, SHIM Je-Ho, PAN Li-Qing, KIM Dong-Hyun. RC-Circuit-Like Dynamic Characteristic of the Magnetic Domain Wall in Flat Ferromagnetic Nanowires[J]. Chin. Phys. Lett., 2015, 32(08): 057502
[6] LI Yi, XU Ben, HU Shen-Yang, LI Yu-Lan, LI Qiu-Lin, LIU Wei. Magnetization Reversal Process of Single Crystal α-Fe Containing a Nonmagnetic Particle[J]. Chin. Phys. Lett., 2015, 32(06): 057502
[7] LIU Kai-Huang, LU Zhi-Chao, LI De-Ren, LIU Tian-Cheng, ZHOU Shao-Xiong. Domain Structure and Magnetization Process in Short Glass-Coated Amorphous Microwires with Positive Magnetostriction[J]. Chin. Phys. Lett., 2012, 29(10): 057502
[8] LIN Jing, SHI Zhong, ZHOU Shi-Ming, ZHANG Xia, XIA Yun-Jie. Exchange Bias in NiCo/FeMn Bilayers with Stripe Domains[J]. Chin. Phys. Lett., 2009, 26(10): 057502
[9] SUN Hui-Yuan, HU Yun-Zhi, LIU Li-Hu. Influence of Temperature on Equilibrium Separation Between Vertical Bloch Lines in OHBs in Garnet Bubble Films[J]. Chin. Phys. Lett., 2009, 26(1): 057502
[10] LI Da-Shan, LIU De-An, ZHI Ya-Nan, QU Wei-Juan, LIU Li-Ren, ZHANG Juan. Red Laser-Induced Domain Inversion in MgO-Doped Lithium Niobate Crystals[J]. Chin. Phys. Lett., 2007, 24(4): 057502
[11] XIA Ai-Lin, CAO Jiang-Wei, TONG Liu-Niu, WEI Fu-Lin, YANG Zheng, HAN Bao-Shan. Magnetic Force Microscopy Study of Alternate Sputtered (001) Oriented L10 Phase FePt Films[J]. Chin. Phys. Lett., 2007, 24(1): 057502
[12] XIA Ai-Lin, FANG Yi-Kun, GUO Zhao-Hui, LI Wei, HAN Bao-Shan. Effect of Sm Volatilization on Magnetic Microstructures of Sintered Sm(Co,Fe,Cu,Zr)z Magnets at High Temperatures[J]. Chin. Phys. Lett., 2006, 23(5): 057502
[13] FANG Yi-Kun, CHANG Cheng-Wu, CHANG Wen-Cheng, XIA Ai-Lin, CHEN Qiang, GE Hong-Liang, HAN Bao-Shan. Magnetic and Crystalline Microstructures of Fe--Pt--B Nanocomposite Ribbons[J]. Chin. Phys. Lett., 2005, 22(7): 057502
[14] FANG Yi-Kun, DING Bo-Ming, PANG Zhi-Yong, WANG Bao-Yan, BAO Da-Xin, HAN Sheng-Hao, HAN Bao-Shan. Magnetic and Crystalline Microstructures of the Sr--La--Co M-type Ferrites by Magnetic Force Microscopy[J]. Chin. Phys. Lett., 2005, 22(4): 057502
[15] FANG Yi-Kun, ZHU Ming-Gang, GUO Yong-Quan, LI Wei, HAN Bao-Shan. Magnetic Microstructure of Sintered Nd-Fe-B Magnets Made from Casting Strips[J]. Chin. Phys. Lett., 2004, 21(8): 057502
Viewed
Full text


Abstract