Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057403    DOI: 10.1088/0256-307X/41/5/057403
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetism and Superconductivity in the $t$–$J$ Model of La$_3$Ni$_2$O$_7$ Under Multiband Gutzwiller Approximation
Jie-Ran Xue1 and Fa Wang1,2*
1International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
2Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
Cite this article:   
Jie-Ran Xue and Fa Wang 2024 Chin. Phys. Lett. 41 057403
Download: PDF(1434KB)   PDF(mobile)(1544KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The recent discovery of possible high temperature superconductivity in single crystals of La$_3$Ni$_2$O$_7$ under pressure renews the interest in research on nickelates. The density functional theory calculations reveal that both $d_{z^2}$ and $d_{x^2-y^2}$ orbitals are active, which suggests a minimal two-orbital model to capture the low-energy physics of this system. In this work, we study a bilayer two-orbital $t$–$J$ model within multiband Gutzwiller approximation, and discuss the magnetism as well as the superconductivity over a wide range of the hole doping. Owing to the inter-orbital super-exchange process between $d_{z^2}$ and $d_{x^2-y^2}$ orbitals, the induced ferromagnetic coupling within layers competes with the conventional antiferromagnetic coupling, and leads to complicated hole doping dependence for the magnetic properties in the system. With increasing hole doping, the system transfers to A-type antiferromagnetic state from the starting G-type antiferromagnetic (G-AFM) state. We also find the inter-layer superconducting pairing of $d_{x^2-y^2}$ orbitals dominates due to the large hopping parameter of $d_{z^2}$ along the vertical inter-layer bonds and significant Hund's coupling between $d_{z^2}$ and $d_{x^2-y^2}$ orbitals. Meanwhile, the G-AFM state and superconductivity state can coexist in the low hole doping regime. To take account of the pressure, we also analyze the impacts of inter-layer hopping amplitude on the system properties.
Received: 22 February 2024      Editors' Suggestion Published: 07 May 2024
PACS:  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.25.Ha (Magnetic properties including vortex structures and related phenomena)  
  74.70.-b (Superconducting materials other than cuprates)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057403       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057403
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jie-Ran Xue and Fa Wang
[1] Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901
[2] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[3] Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D F, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735
[4] Zeng S W, Li C J, Chow L E, Cao Y, Zhang Z T, Tang C S, Yin X M, Lim Z S, Hu J X, Yang P, and Ariando A 2022 Sci. Adv. 8 eabl9927
[5] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[6] Osada M, Wang B Y, Lee K, Li D F, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801
[7] Zeng S W, Yin X M, Li C J, Chow L E, Tang C S, Han K, Huang Z, Cao Y, Wan D Y, Zhang Z T, Lim Z S, Diao C Z, Yang P, Wee A T S, Pennycook S J, and Ariando A 2022 Nat. Commun. 13 743
[8] Yang C, Ortiz R A, Wang Y, Sigle W, Wang H G, Benckiser E, Keimer B, and van Aken P A 2023 Nano Lett. 23 3291
[9] Wang N N, Yang M W, Yang Z, Chen K Y, Zhang H, Zhang Q H, Zhu Z H, Uwatoko Y, Gu L, Dong X L, Sun J P, Jin K J, and Cheng J G 2022 Nat. Commun. 13 4367
[10] Gu Q Q and Wen H H 2022 Innovation 3 100202
[11] Pan G A, Ferenc Segedin D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova Carrizales D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160
[12] Sun H L, Huo M W, Hu X W, Li J Y, Liu Z J, Han Y F, Tang L Y, Mao Z Q, Yang P T, Wang B S, Cheng J G, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[13] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[14] Luo Z H, Hu X W, Wang M, Wú W, and Yao D X 2023 Phys. Rev. Lett. 131 126001
[15] Gu Y H, Le C, Yang Z S, Wu X X, and Hu J P 2023 arXiv:2306.07275 [cond-mat.supr-con]
[16] Pardo V and Pickett W E 2011 Phys. Rev. B 83 245128
[17] Christiansson V, Petocchi F, and Werner P 2023 Phys. Rev. Lett. 131 206501
[18] Cao Y Y and Yang Y F 2024 Phys. Rev. B 109 L081105
[19] Kumar U, Melnick C, and Kotliar G 2023 arXiv: 2310.00983 [cond-mat.str-el]
[20] Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112
[21] Wú W, Luo Z H, Yao D X, and Wang M 2024 Sci. Chin. Phys. Mech. & Astron. 67 117402
[22] Yang Y F, Zhang G M, and Zhang F C 2023 Phys. Rev. B 108 L201108
[23] Lu D C, Li M, Zeng Z Y, Hou W, Wang J, Yang F, and You Y Z 2023 arXiv:2308.11195 [cond-mat.str-el]
[24] Schlömer H, Schollwöck U, Grusdt F, and Bohrdt A 2023 arXiv:2311.03349 [cond-mat.str-el]
[25] Chen J L, Yang F, and Li W 2023 arXiv:2311.05491 [cond-mat.str-el]
[26] Qu X Z, Qu D W, Li W, and Su G 2023 arXiv:2311.12769 [cond-mat.str-el]
[27] Lu C, Pan Z M, Yang F, and Wu C J 2024 Phys. Rev. Lett. 132 146002
[28] Qu X Z, Qu D W, Chen J L, Wu C J, Yang F, Li W, and Su G 2024 Phys. Rev. Lett. 132 036502
[29] Zheng Y Y and Wú W 2023 arXiv:2312.03605 [cond-mat.str-el]
[30] Lu C, Pan Z M, Yang F, and Wu C J 2023 arXiv:2310.02915 [cond-mat.supr-con]
[31] Liu Y B, Mei J W, Ye F, Chen W Q, and Yang F 2023 Phys. Rev. Lett. 131 236002
[32] Yang Q G, Wang D, and Wang Q H 2023 Phys. Rev. B 108 L140505
[33] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2023 Phys. Rev. B 108 165141
[34] Sakakibara H, Kitamine N, Ochi M, and Kuroki K 2024 Phys. Rev. Lett. 132 106002
[35] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Nat. Commun. 15 2470
[36] Ryee S, Witt N, and Wehling T O 2023 arXiv:2310.17465 [cond-mat.supr-con]
[37] Zhang Y, Lin L F, Moreo A, Maier T A, and Dagotto E 2024 Phys. Rev. B 109 045151
[38] Lange H, Homeier L, Demler E, Schollwöck U, Grusdt F, and Bohrdt A 2024 Phys. Rev. B 109 045127
[39] Yang H, Oh H, and Zhang Y H 2023 arXiv:2309.15095 [cond-mat.str-el]
[40] Oh H and Zhang Y H 2023 Phys. Rev. B 108 174511
[41] Kakoi M, Kaneko T, Sakakibara H, Ochi M, and Kuroki K 2023 arXiv:2312.04304 [cond-mat.supr-con]
[42] Shen Y, Qin M P, and Zhang G M 2023 Chin. Phys. Lett. 40 127401
[43] Jiang R S, Hou J N, Fan Z Y, Lang Z J, and Ku W 2024 Phys. Rev. Lett. 132 126503
[44] Heier G, Park K, and Savrasov S Y 2024 Phys. Rev. B 109 104508
[45] Fan Z, Zhang J F, Zhan B, Lv D S, Jiang X Y, Normand B, and Xiang T 2023 arXiv:2312.17064 [cond-mat.supr-con]
[46] Zhang Y, Lin L F, Moreo A, and Dagotto E 2023 Phys. Rev. B 108 L180510
[47] LaBollita H, Pardo V, Norman M R, and Botana A S 2023 arXiv:2309.17279 [cond-mat.str-el]
[48] Chen X J, Jiang P H, Li J, Zhong Z C, and Lu Y 2023 arXiv:2307.07154 [cond-mat.supr-con]
[49] Sui X L, Han X R, Chen X J, Qiao L, Shao X H, and Huang B 2023 arXiv:2312.01271 [cond-mat.mtrl-sci]
[50] Geisler B, Fanfarillo L, Hamlin J J, Stewart G R, Hennig R G, and Hirschfeld P J 2024 arXiv:2401.04258 [cond-mat.supr-con]
[51] Zhang Y, Su D J, Huang Y, Sun H L, Huo M W, Shan Z Y, Ye K X, Yang Z H, Li R, Smidman M, Wang M, Jiao L, and Yuan H Q 2023 arXiv:2307.14819 [cond-mat.supr-con]
[52] Zhou Y Z, Guo J, Cai S, Sun H L, Wang P Y, Zhao J Y, Han J Y, Chen X T, Wu Q, Ding Y, Wang M, Xiang T, Mao H K, and Sun L L 2023 arXiv:2311.12361 [cond-mat.supr-con]
[53] Wang L H, Li Y, Xie S Y, Liu F Y, Sun H L, Huang C X, Gao Y, Nakagawa T, Fu B Y, Dong B, Cao Z H, Yu R Z, Kawaguchi S I, Kadobayashi H, Wang M, Jin C Q, Mao H K, and Liu H Z 2023 arXiv:2311.09186 [cond-mat.supr-con]
[54] Wang H Z, Chen L, Rutherford A, Zhou H D, and Xie W W 2024 Inorg. Chem. 63 5020
[55] Liu Z, Huo M W, Li J, Li Q, Liu Y C, Dai Y M, Zhou X X, Hao J H, Lu Y, Wang M, and Wen H H 2023 arXiv:2307.02950 [cond-mat.supr-con]
[56] Kakoi M, Oi T, Ohshita Y, Yashima M, Kuroki K, Kato T, Takahashi H, Ishiwata S, Adachi Y, Hatada N, Uda T, and Mukuda H 2023 arXiv:2312.11844 [cond-mat.str-el]
[57] Chen K W, Liu X Q, Jiao J C, Zou M Y, Luo Y X, Wu Q, Zhang N Y, Guo Y F, and Shu L 2023 arXiv:2311.15717 [cond-mat.str-el]
[58] Xu M Y, Huyan S Y, Wang H Z, Bud'ko S L, Chen X L, Ke X L, Mitchell J F, Canfield P C, Li J, and Xie W W 2023 arXiv:2312.14251 [cond-mat.supr-con]
[59] Dong Z H, Huo M W, Li J, Li J Y, Li P C, Sun H L, Lu Y, Wang M, Wang Y Y, and Chen Z 2023 arXiv:2312.15727 [cond-mat.supr-con]
[60] Talantsev E F and Chistyakov V V 2024 arXiv:2401.00804 [cond-mat.supr-con]
[61] Castellani C, Natoli C R, and Ranninger J 1978 Phys. Rev. B 18 4945
[62] Zhang F C, Gros C, Rice T M, and Shiba H 1988 Supercond. Sci. Technol. 1 36
[63]Li C H 2009 Gutzwiller Approximation in Strongly Correlated Electron Systems, Ph.D. Dessertation (Boston College)
[64] Zhai H, Wang F, and Lee D H 2009 Phys. Rev. B 80 064517
[65] Maier T A and Scalapino D J 2011 Phys. Rev. B 84 180513
[66] Lin L F, Zhang Y, Alvarez G, Moreo A, and Dagotto E 2021 Phys. Rev. Lett. 127 077204
[67] Scalapino D J, White S R, and Zhang S C 1992 Phys. Rev. Lett. 68 2830
[68] Scalapino D J, White S R, and Zhang S C 1993 Phys. Rev. B 47 7995
[69] Hazra T, Verma N, and Randeria M 2019 Phys. Rev. X 9 031049
[70] Sigrist M, Rice T M, and Zhang F C 1994 Phys. Rev. B 49 12058
[71] Ma T X, Wang D, and Wu C J 2022 Phys. Rev. B 106 054510
Related articles from Frontiers Journals
[1] Jiacheng Ye, Jun Li, DingYong Zhong, and Dao-Xin Yao. Possible Superconductivity in Biphenylene[J]. Chin. Phys. Lett., 2023, 40(7): 057403
[2] Yuanyuan Yang, Qisi Wang, Shaofeng Duan, Hongliang Wo, Chaozhi Huang, Shichong Wang, Lingxiao Gu, Dong Qian, Jun Zhao, and Wentao Zhang. Unusual Band Splitting and Superconducting Gap Evolution with Sulfur Substitution in FeSe[J]. Chin. Phys. Lett., 2022, 39(5): 057403
[3] Yu Dong, Yangyang Lv, Zuyu Xu, M. Abdel-Hafiez, A. N. Vasiliev, Haipeng Zhu, Junfeng Wang, Liang Li, Wanghao Tian, Wei Chen, Song Bao, Jinghui Wang, Yueshen Wu, Yulong Huang, Shiliang Li, Jie Yuan, Kui Jin, Labao Zhang, Huabing Wang, Shun-Li Yu, Jinsheng Wen, Jian-Xin Li, Jun Li, and Peiheng Wu. Observation of a Ubiquitous ($\pi, \pi$)-Type Nematic Superconducting Order in the Whole Superconducting Dome of Ultra-Thin BaFe$_{2-x}$Ni$_x$As$_2$ Single Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 057403
[4] Jianan Chu, Teng Wang, Han Zhang, Yixin Liu, Jiaxin Feng, Zhuojun Li, Da Jiang, Gang Mu, Zengfeng Di, and Xiaoming Xie. Gap Structure of 12442-Type KCa$_2$(Fe$_{1-x}$Co$_{x}$)$_4$As$_{4}$F$_2$ ($x$ = 0, 0.1) Revealed by Temperature Dependence of Lower Critical Field[J]. Chin. Phys. Lett., 2020, 37(12): 057403
[5] Li-Han Chen, Da Wang, Yi Zhou, Qiang-Hua Wang. Superconductivity, Pair Density Wave, and Néel Order in Cuprates[J]. Chin. Phys. Lett., 2020, 37(1): 057403
[6] Xi Zhang, Tianchuang Luo, Xiyao Hu, Jing Guo, Gongchang Lin, Yuehui Li, Yanzhao Liu, Xiaokang Li, Jun Ge, Ying Xing, Zengwei Zhu, Peng Gao, Liling Sun, Jian Wang. Superconductivity and Fermi Surface Anisotropy in Transition Metal Dichalcogenide NbTe$_{2}$[J]. Chin. Phys. Lett., 2019, 36(5): 057403
[7] Hui Meng, Huan Zhang, Wan-Sheng Wang, Qiang-Hua Wang. Thermal conductivity in near-nodal superconductors[J]. Chin. Phys. Lett., 2018, 35(12): 057403
[8] Ming-Qiang Ren, Ya-Jun Yan, Tong Zhang, Dong-Lai Feng. Possible Nodeless Superconducting Gaps in Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ and YBa$_2$Cu$_3$O$_{7-x}$ Revealed by Cross-Sectional Scanning Tunneling Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(12): 057403
[9] Ye Xiong. Fano Resonances Can Provide Two Criteria to Distinguish Majorana Bound States from Other Candidates in Experiments[J]. Chin. Phys. Lett., 2016, 33(05): 057403
[10] Yu-Jia Long, Ling-Xiao Zhao, Pei-Pei Wang, Huai-Xin Yang, Jian-Qi Li, Hai Zi, Zhi-An Ren, Cong Ren, Gen-Fu Chen. Single Crystal Growth and Physical Property Characterization of Non-centrosymmetric Superconductor PbTaSe$_2$[J]. Chin. Phys. Lett., 2016, 33(03): 057403
[11] ZHU Jun, WANG Zhao-Sheng, WANG Zhen-Yu, HOU Xing-Yuan, LUO Hui-Qian, LU Xing-Ye, LI Chun-Hong, SHAN Lei, WEN Hai-Hu, REN Cong. Doping Induced Gap Anisotropy in Iron-Based Superconductors: a Point-Contact Andreev Reflection Study of BaFe2−xNixAs2 Single Crystals[J]. Chin. Phys. Lett., 2015, 32(07): 057403
[12] GONG Xin-Xin, ZHOU He-Xin, XU Peng-Chao, YUE Di, ZHU Kai, JIN Xiao-Feng, TIAN He, ZHAO Ge-Jian, CHEN Ting-Yong. Possible p-Wave Superconductivity in Epitaxial Bi/Ni Bilayers[J]. Chin. Phys. Lett., 2015, 32(06): 057403
[13] WU Xian-Xin, LE Cong-Cong, YUAN Jing, FAN Heng, HU Jiang-Ping. Magnetism in Quasi-One-Dimensional A2Cr3As3 (A=K,Rb) Superconductors[J]. Chin. Phys. Lett., 2015, 32(5): 057403
[14] LI Hai-Chao, XIANG Yuan-Yuan, WANG Qiang-Hua. Consistency between Itinerant and Local-Moment Pictures for Superconductivity in Alkaline Iron Selenide Superconductors[J]. Chin. Phys. Lett., 2014, 31(06): 057403
[15] HAN Qiang, LIU Jia, ZHANG Dan-Bo, WANG Zi-Dan. An Exotic Type of Fulde–Ferrel–Larkin–Ovchinnikov States in Spin-Orbit Coupled Condensates[J]. Chin. Phys. Lett., 2014, 31(05): 057403
Viewed
Full text


Abstract