Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 057401    DOI: 10.1088/0256-307X/41/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure
Qiu-Hao Wang1,2,3, Mei-Yan Ni1, Shu-Jing Li4, Fa-Wei Zheng2,3, Hong-Yan Lu1*, and Ping Zhang1,5*
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China
2Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
3Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
4College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
5Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Cite this article:   
Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li et al  2024 Chin. Phys. Lett. 41 057401
Download: PDF(3726KB)   PDF(mobile)(3727KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI$_3$ and CrSe$_2$ monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI$_3$/CrSe$_2$ heterostructure, which is expected to be applied to spintronic devices.
Received: 29 January 2024      Published: 03 May 2024
PACS:  74.25.-q (Properties of superconductors)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  75.30.Et (Exchange and superexchange interactions)  
  63.20.dk (First-principles theory)  
  75.75.-c.  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/057401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiu-Hao Wang
Mei-Yan Ni
Shu-Jing Li
Fa-Wei Zheng
Hong-Yan Lu
and Ping Zhang
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[3] Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[4] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y, Huang Y, Xu X, Duan X, Ji W, and Duan X 2021 Nat. Mater. 20 818
[5] Kim H H, Yang B W, Li S W et al. 2019 Proc. Natl. Acad. Sci. USA 116 11131
[6] Jiang S, Shan J, and Mak K F 2018 Nat. Mater. 17 406
[7] Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544
[8] Seyler K L, Zhong D, Klein D R et al. 2018 Nat. Phys. 14 277
[9] Klein D R, MacNeill D, Lado J L et al. 2018 Science 360 1218
[10] Kumar Gudelli V and Guo G Y 2019 New J. Phys. 21 053012
[11] Sun Z, Yi Y, Song T, Clark G, Huang B, Shan Y, Wu S, Huang D, Gao C, Chen Z, McGuire M, Cao T, Xiao D, Liu W T, Yao W, Xu X, and Wu S 2019 Nature 572 497
[12] Guo K, Deng B, Liu Z, Gao C, Shi Z, Bi L, Zhang L, Lu H, Zhou P, Zhang L, Cheng Y, and Peng B 2020 Sci. Chin. Mater. 63 413
[13] Sivadas N, Okamoto S, Xu X, Fennie C J, and Xiao D 2018 Nano Lett. 18 7658
[14] Yu H, Zhao J, and Zheng F 2021 Appl. Phys. Lett. 119 222403
[15] Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, and Morpurgo A F 2018 Nat. Commun. 9 2516
[16] Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science 360 1214
[17] Yang W, Yang X, Li M, Hu L, and Zheng F 2024 Appl. Phys. Lett. 124 021901
[18] Shang J, Tang X, Tan X, Du A, Liao T, Smith S C, Gu Y, Li C, and Kou L 2020 ACS Appl. Nano Mater. 3 1282
[19] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[20] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[21] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[22] Hobbs D, Kresse G, and Hafner J 2000 Phys. Rev. B 62 11556
[23] Blöchl P E 1994 Phys. Rev. B 50 17953
[24] Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943
[25] Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104
[26] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[27] Zhang Z, Ni X, Huang H, Hu L, and Liu F 2019 Phys. Rev. B 99 115441
[28] Huang M, Rugheimer P, Lagally M G, and Liu F 2005 Phys. Rev. B 72 085450
[29] Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, Mehta P, and Fox J 2011 Psychometrika 76 306
[30] Liechtenstein A I, Katsnelson M I, Antropov V P, and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65
[31] Jang S W, Jeong M Y, Yoon H, Ryee S, and Han M J 2019 Phys. Rev. Mater. 3 031001
Related articles from Frontiers Journals
[1] Xin He, Changling Zhang, Zhiwen Li, Sijia Zhang, Shaomin Feng, Jianfa Zhao, Ke Lu, Baosen Min, Yi Peng, Xiancheng Wang, Jin Song, Luhong Wang, Saori I. Kawaguchi, Cheng Ji, Bing Li, Haozhe Liu, J. S. Tse, and Changqing Jin. Superconductivity above 30 K Achieved in Dense Scandium[J]. Chin. Phys. Lett., 2023, 40(10): 057401
[2] Qiuping Yang, Xue Jiang, and Jijun Zhao. Coexistence of Zero-Dimensional Electride State and Superconductivity in AlH$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2023, 40(10): 057401
[3] Xin-Zhu Yin, Hao Wang, Qiu-Hao Wang, Na Jiao, Mei-Yan Ni, Meng-Meng Zheng, Hong-Yan Lu, and Ping Zhang. Superconductivity Modulated by Carbonization and Hydrogenation in Two-Dimensional MXenes $M_{2}$N ($M$ = Mo, W)[J]. Chin. Phys. Lett., 2023, 40(9): 057401
[4] Peiyi Li, Jiachang Bi, Shunda Zhang, Rui Cai, Guanhua Su, Fugang Qi, Ruyi Zhang, Zhiyang Wei, and Yanwei Cao. Transformation of Hexagonal Lu to Cubic LuH$_{2+x}$ Single-Crystalline Films[J]. Chin. Phys. Lett., 2023, 40(8): 057401
[5] Sheng Ma, Shanshan Yan, Jiali Liu, Yizhe Wang, Yuhang Zhang, Zhen Zhao, Zouyouwei Lu, Dong Li, Yue Liu, Jihu Lu, Hua Zhang, Haitao Yang, Fang Zhou, Zian, Li, Xiaoli Dong, and Zhongxian Zhao. Hydrothermally Obtaining Superconductor Single Crystal of FeSe$_{0.2}$Te$_{0.8}$ without Interstitial Fe[J]. Chin. Phys. Lett., 2023, 40(6): 057401
[6] X. He, C. L. Zhang, Z. W. Li, S. J. Zhang, B. S. Min, J. Zhang, K. Lu, J. F. Zhao, L. C. Shi, Y. Peng, X. C. Wang, S. M. Feng, J. Song, L. H. Wang, V. B. Prakapenka, S. Chariton, H. Z. Liu, and C. Q. Jin. Superconductivity Observed in Tantalum Polyhydride at High Pressure[J]. Chin. Phys. Lett., 2023, 40(5): 057401
[7] Liu Yang, Ya-Ping Li, Hao-Dong Liu, Na Jiao, Mei-Yan Ni, Hong-Yan Lu, Ping Zhang, and C. S. Ting. Theoretical Prediction of Superconductivity in Boron Kagome Monolayer: $M$B$_{3}$ ($M$ = Be, Ca, Sr) and the Hydrogenated CaB$_{3}$[J]. Chin. Phys. Lett., 2023, 40(1): 057401
[8] Chunsheng Gong, Shangjie Tian, Zhijun Tu, Qiangwei Yin, Yang Fu, Ruitao Luo, and Hechang Lei. Superconductivity in Kagome Metal YRu$_{3}$Si$_{2}$ with Strong Electron Correlations[J]. Chin. Phys. Lett., 2022, 39(8): 057401
[9] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 057401
[10] Lixuesong Han, Xianbiao Shi, Jinlong Jiao, Zhenhai Yu, Xia Wang, Na Yu, Zhiqiang Zou, Jie Ma, Weiwei Zhao, Wei Xia, and Yanfeng Guo. Nontrivial Topological States in BaSn$_{5}$ Superconductor Probed by de Haas–van Alphen Quantum Oscillations[J]. Chin. Phys. Lett., 2022, 39(6): 057401
[11] Yutao Jiang, Ze Yu, Yuxin Wang, Tenglong Lu, Sheng Meng, Kun Jiang, and Miao Liu. Screening Promising CsV$_{3}$Sb$_{5}$-Like Kagome Materials from Systematic First-Principles Evaluation[J]. Chin. Phys. Lett., 2022, 39(4): 057401
[12] Bin-Bin Ruan, Meng-Hu Zhou, Qing-Song Yang, Ya-Dong Gu, Ming-Wei Ma, Gen-Fu Chen, and Zhi-An Ren. Superconductivity with a Violation of Pauli Limit and Evidences for Multigap in $\eta$-Carbide Type Ti$_4$Ir$_2$O[J]. Chin. Phys. Lett., 2022, 39(2): 057401
[13] Yi Zhao, Jun Deng, A. Bhattacharyya, D. T. Adroja, P. K. Biswas, Lingling Gao, Weizheng Cao, Changhua Li, Cuiying Pei, Tianping Ying, Hideo Hosono, and Yanpeng Qi. Superconductivity in the Layered Cage Compound Ba$_{3}$Rh$_{4}$Ge$_{16}$[J]. Chin. Phys. Lett., 2021, 38(12): 057401
[14] Yuxin Yang, Wenhui Fan, Qinghua Zhang, Zhaoxu Chen, Xu Chen, Tianping Ying, Xianxin Wu, Xiaofan Yang, Fanqi Meng, Gang Li, Shiyan Li, Lin Gu, Tian Qian, Andreas P. Schnyder, Jian-gang Guo, and Xiaolong Chen. Discovery of Two Families of VSb-Based Compounds with V-Kagome Lattice[J]. Chin. Phys. Lett., 2021, 38(12): 057401
[15] Qiang Gao, Yuchen Zhao, Xing-Jiang Zhou, and Zhihai Zhu. Preparation of Superconducting Thin Films of Infinite-Layer Nickelate Nd$_{0.8}$Sr$_{0.2}$NiO$_{2}$[J]. Chin. Phys. Lett., 2021, 38(7): 057401
Viewed
Full text


Abstract