CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure |
Qiu-Hao Wang1,2,3, Mei-Yan Ni1, Shu-Jing Li4, Fa-Wei Zheng2,3, Hong-Yan Lu1*, and Ping Zhang1,5* |
1School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China 2Center for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China 3Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China 4College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China 5Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
|
|
Cite this article: |
Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li et al 2024 Chin. Phys. Lett. 41 057401 |
|
|
Abstract Based on first-principles calculations, we systematically study the stacking energy and interlayer magnetic interaction of the heterobilayer composed of CrI$_3$ and CrSe$_2$ monolayers. It is found that the stacking order plays a crucial role in the interlayer magnetic coupling. Among all possible stacking structures, the AA-stacking is the most stable heterostructure, exhibiting interlayer antiferromagnetic interactions. Interestingly, the interlayer magnetic interaction can be effectively tuned by biaxial strain. A 4.3% compressive strain would result in a ferromagnetic interlayer interaction in all stacking orders. These results reveal the magnetic properties of CrI$_3$/CrSe$_2$ heterostructure, which is expected to be applied to spintronic devices.
|
|
Received: 29 January 2024
Published: 03 May 2024
|
|
PACS: |
74.25.-q
|
(Properties of superconductors)
|
|
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
63.20.dk
|
(First-principles theory)
|
|
75.75.-c.
|
|
|
|
|
|
[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 |
[2] | Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270 |
[3] | Gong C, Li L, Li Z L, Ji H W, Stern A, Xia Y, Cao T, Bao W, Wang C Z, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265 |
[4] | Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Ye Y, Huang Y, Xu X, Duan X, Ji W, and Duan X 2021 Nat. Mater. 20 818 |
[5] | Kim H H, Yang B W, Li S W et al. 2019 Proc. Natl. Acad. Sci. USA 116 11131 |
[6] | Jiang S, Shan J, and Mak K F 2018 Nat. Mater. 17 406 |
[7] | Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544 |
[8] | Seyler K L, Zhong D, Klein D R et al. 2018 Nat. Phys. 14 277 |
[9] | Klein D R, MacNeill D, Lado J L et al. 2018 Science 360 1218 |
[10] | Kumar Gudelli V and Guo G Y 2019 New J. Phys. 21 053012 |
[11] | Sun Z, Yi Y, Song T, Clark G, Huang B, Shan Y, Wu S, Huang D, Gao C, Chen Z, McGuire M, Cao T, Xiao D, Liu W T, Yao W, Xu X, and Wu S 2019 Nature 572 497 |
[12] | Guo K, Deng B, Liu Z, Gao C, Shi Z, Bi L, Zhang L, Lu H, Zhou P, Zhang L, Cheng Y, and Peng B 2020 Sci. Chin. Mater. 63 413 |
[13] | Sivadas N, Okamoto S, Xu X, Fennie C J, and Xiao D 2018 Nano Lett. 18 7658 |
[14] | Yu H, Zhao J, and Zheng F 2021 Appl. Phys. Lett. 119 222403 |
[15] | Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, and Morpurgo A F 2018 Nat. Commun. 9 2516 |
[16] | Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science 360 1214 |
[17] | Yang W, Yang X, Li M, Hu L, and Zheng F 2024 Appl. Phys. Lett. 124 021901 |
[18] | Shang J, Tang X, Tan X, Du A, Liao T, Smith S C, Gu Y, Li C, and Kou L 2020 ACS Appl. Nano Mater. 3 1282 |
[19] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 |
[20] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 |
[21] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 |
[22] | Hobbs D, Kresse G, and Hafner J 2000 Phys. Rev. B 62 11556 |
[23] | Blöchl P E 1994 Phys. Rev. B 50 17953 |
[24] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 |
[25] | Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104 |
[26] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 |
[27] | Zhang Z, Ni X, Huang H, Hu L, and Liu F 2019 Phys. Rev. B 99 115441 |
[28] | Huang M, Rugheimer P, Lagally M G, and Liu F 2005 Phys. Rev. B 72 085450 |
[29] | Boker S, Neale M, Maes H, Wilde M, Spiegel M, Brick T, Spies J, Estabrook R, Kenny S, Bates T, Mehta P, and Fox J 2011 Psychometrika 76 306 |
[30] | Liechtenstein A I, Katsnelson M I, Antropov V P, and Gubanov V A 1987 J. Magn. Magn. Mater. 67 65 |
[31] | Jang S W, Jeong M Y, Yoon H, Ryee S, and Han M J 2019 Phys. Rev. Mater. 3 031001 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|