Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 056101    DOI: 10.1088/0256-307X/41/5/056101
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Origin of the Disparity between the Stability of Transmutated Mix-Cation and Mix-Anion Compounds
Shi-Wei Ye1, Song-Yuan Geng2, Han-Pu Liang1, Xie Zhang3*, and Su-Huai Wei1*
1Beijing Computational Science Research Center, Beijing 100193, China
2Advanced Materials Thrust, Function Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511458, China
3School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article:   
Shi-Wei Ye, Song-Yuan Geng, Han-Pu Liang et al  2024 Chin. Phys. Lett. 41 056101
Download: PDF(3990KB)   PDF(mobile)(4111KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transmutation is an efficient approach for material design. For example, ternary compound CuGaSe$_{2}$ in chalcopyrite structure is a promising material for novel optoelectronic and thermoelectric device applications. It can be considered as formed from the binary host compound ZnSe in zinc-blende structure by cation transmutation (i.e., replacing two Zn atoms by one Cu and one Ga). While cation-transmutated materials are common, anion-transmutated ternary materials are rare, for example, Zn$_{2}$AsBr (i.e., replacing two Se atoms by one As and one Br) is not reported. The physical origin for this puzzling disparity is unclear. In this work, we employ first-principles calculations to address this issue, and find that the distinct differences in stability between cation-transmutated (mix-cation) and anion-transmutated (mix-anion) compounds originate from their different trends of ionic radii as functions of their ionic state, i.e., for cations, the radius decreases with the increasing ionic state, whereas for anions, the radius increases with the increasing absolute ionic state. Therefore, for mix-cation compounds, the strain energy and Coulomb energy can be simultaneously optimized to make these materials stable. In contrast, for mix-anion systems, minimization of Coulomb energy will increase the strain energy, thus the system becomes unstable or less stable. Thus, the trend of decreasing strain energy and Coulomb energy is consistent in mix-cation compounds, while it is opposite in mix-anion compounds. Furthermore, the study suggests that the stability strategy for mix-anion compounds can be controlled by the ratio of ionic radii $r_{3}/r_{1}$, with a smaller ratio indicating greater stability. Our work, thus, elucidates the intrinsic stability trend of transmutated materials and provides guidelines for the design of novel ternary materials for various device applications.
Received: 08 March 2024      Editors' Suggestion Published: 23 May 2024
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  82.60.Cx (Enthalpies of combustion, reaction, and formation)  
  74.70.Dd (Ternary, quaternary, and multinary compounds)  
  61.82.Fk (Semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/056101       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/056101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shi-Wei Ye
Song-Yuan Geng
Han-Pu Liang
Xie Zhang
and Su-Huai Wei
[1] Goodman C H L 1958 J. Phys. Chem. Solids 6 305
[2] Pamplin B R 1960 Nature 188 136
[3] Pamplin B R 1964 J. Phys. Chem. Solids 25 675
[4] Tu Y G et al. 2019 Sci. Chin. Phys. Mech. & Astron. 62 974221
[5] Zhao W Y et al. 2019 Chin. Phys. Lett. 36 028401
[6] Green M A et al. 2022 Prog. Photovoltaics 30 3
[7] Reese M O et al. 2018 Nat. Energy 3 1002
[8] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, and Sugimoto H 2019 IEEE J. Photovoltaics 9 1863
[9] Lv F, Liang H P, and Duan Y F 2023 Phys. Rev. B 107 045422
[10] Liang H P and Duan Y F 2022 Chin. Phys. B 31 076301
[11] Zhang J W et al. 2014 Adv. Mater. 26 3848
[12] Wei S H et al. 1999 Phys. Rev. B 59 R2478
[13] Su D S and Wei S H 1999 Appl. Phys. Lett. 74 2483
[14] Yue Z M et al. 2021 Chin. Phys. Lett. 38 117201
[15] Liang H P et al. 2024 Phys. Rev. B 109 035205
[16] Xie H Y et al. 2023 J. Am. Chem. Soc. 145 3211
[17] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[18] Yaseen M S, Murtaza G, and Murtaza G 2020 Int. J. Mod. Phys. B 34 2050133
[19] Jiang X and Lambrecht W R L 2004 Phys. Rev. B 69 035201
[20] Chichibu S et al. 1998 J. Appl. Phys. 83 3678
[21] Wei S H and Zunger A 1993 Appl. Phys. Lett. 63 2549
[22] Jaffe J E and Zunger A 1983 Phys. Rev. B 28 5822
[23] Kameyama T et al. 2016 Nanoscale 8 5435
[24] Kopytov A V and Kosobutsky A V 2010 Phys. Solid State 52 1359
[25] Bodnar' I V et al. 2000 Inorg. Mater. 36 1000
[26] Liu X H, Wessel C, Pan F F, and Dronskowski R 2013 J. Solid State Chem. 203 31
[27]https://next-gen.materialsproject.org/materials
[28] Guo Q B et al. 2023 Chin. Phys. Lett. 40 028801
[29] Belabbes A et al. 2006 Appl. Phys. Lett. 88 152109
[30] Yuan Y et al. 2015 Chin. Phys. B 24 116302
[31] Blöchl P E 1994 Phys. Rev. B 50 17953
[32] Hafner J 2008 J. Comput. Chem. 29 2044
[33] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Heyd J, Scuseria G E, and Ernzerhof M 2006 J. Chem. Phys. 124 219906
[35] Yin W J, Yan Y, and Wei S H 2014 J. Phys. Chem. Lett. 5 3625
Related articles from Frontiers Journals
[1] Ao Zhang, Ke Deng, Jieming Sheng, Pengfei Liu, Shiv Kumar, Kenya Shimada, Zhicheng Jiang, Zhengtai Liu, Dawei Shen, Jiayu Li, Jun Ren, Le Wang, Liang Zhou, Yoshihisa Ishikawa, Takashi Ohhara, Qiang Zhang, Garry McIntyre, Dehong Yu, Enke Liu, Liusuo Wu, Chaoyu Chen, and Qihang Liu. Chiral Dirac Fermion in a Collinear Antiferromagnet[J]. Chin. Phys. Lett., 2023, 40(12): 056101
[2] Guo Chen, Caoping Niu, Wenming Xia, Jie Zhang, Zhi Zeng, and Xianlong Wang. Route to Stabilize Cubic Gauche Polynitrogen to Ambient Conditions via Surface Saturation by Hydrogen[J]. Chin. Phys. Lett., 2023, 40(8): 056101
[3] Liang Ma, Lingrui Wang, Yifang Yuan, Haizhong Guo, and Hongbo Wang. High-Temperature Superconductivity in Doped Boron Clathrates[J]. Chin. Phys. Lett., 2023, 40(8): 056101
[4] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 056101
[5] Zhenjiang Han, Han Liu, Quan Li, Dan Zhou, and Jian Lv. Superior Mechanical Properties of GaAs Driven by Lattice Nanotwinning[J]. Chin. Phys. Lett., 2021, 38(4): 056101
[6] Yanling Zhang , Xiaozhu Hao , Yanping Huang , Fubo Tian, Da Li , Youchun Wang , Hao Song , and Defang Duan . Structural and Electrical Properties of Be$_{x}$Zn$_{1-x}$O Alloys under High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 056101
[7] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 056101
[8] M. Kr. Deka, A. N. Dev. Supersonic Shock Wave with Landau Quantization in a Relativistic Degenerate Plasma[J]. Chin. Phys. Lett., 2020, 37(1): 056101
[9] Tang-Shi Yao, Cen-Yao Tang, Meng Yang, Ke-Jia Zhu, Da-Yu Yan, Chang-Jiang Yi, Zi-Li Feng, He-Chang Lei, Cheng-He Li, Le Wang, Lei Wang, You-Guo Shi, Yu-Jie Sun, Hong Ding. Machine Learning to Instruct Single Crystal Growth by Flux Method[J]. Chin. Phys. Lett., 2019, 36(6): 056101
[10] Jian-Hui Chen, Cheng Cai, Xiu-Jun Fu. Decagonal and Dodecagonal Quasicrystals Obtained by Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2019, 36(3): 056101
[11] Mei-Zhe Lv, Bin Xu, Li-Chao Cai, Feng Jia, Xing-Dong Yuan. Analysis of Transition Mechanism of Cubic Boron Nitride Single Crystals under High Pressure-High Temperature with Valence Electron Structure Calculation[J]. Chin. Phys. Lett., 2019, 36(1): 056101
[12] Hong-Mei Zhang, Cheng Cai, Xiu-Jun Fu. Self-Similar Transformation and Vertex Configurations of the Octagonal Ammann–Beenker Tiling[J]. Chin. Phys. Lett., 2018, 35(6): 056101
[13] Yue-Yu Zhang, Shiyou Chen, Peng Xu, Hongjun Xiang, Xin-Gao Gong, Aron Walsh, Su-Huai Wei. Intrinsic Instability of the Hybrid Halide Perovskite Semiconductor CH$_{3}$NH$_{3}$PbI$_{3}$$^*$[J]. Chin. Phys. Lett., 2018, 35(3): 056101
[14] Kanokwan Kanchiang, Phakkhananan Pakawanit, Rattikorn Yimnirun. Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation[J]. Chin. Phys. Lett., 2017, 34(8): 056101
[15] Zi-Wei Zhu, Ji-Yuan Zheng, Lai Wang, Bing Xiong, Chang-Zheng Sun, Zhi-Biao Hao, Yi Luo, Yan-Jun Han, Jian Wang, Hong-Tao Li. $Ab\ Initio$ Calculation of Dielectric Function in Wurtzite GaN Based on Walter's Model[J]. Chin. Phys. Lett., 2017, 34(3): 056101
Viewed
Full text


Abstract