PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Experimental Investigations of Quasi-Coherent Micro-Instabilities in J-TEXT Ohmic Plasmas |
Peng Shi1,2, G. Zhuang3, Zhifeng Cheng2, Li Gao2, Yinan Zhou2, Yong Liu4, J. T. Luo4, and Jingchun Li4* |
1Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China 2International Joint Research Laboratory of Magnetic Confinement Fusion and Plasma Physics, State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 3Department of Engineering and Applied Physics School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China 4Shenzhen Key Laboratory of Nuclear and Radiation Safety, Institute for Advanced Study in Nuclear Energy & Safety, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 510640, China
|
|
Cite this article: |
Peng Shi, G. Zhuang, Zhifeng Cheng et al 2024 Chin. Phys. Lett. 41 055201 |
|
|
Abstract Quasi-coherent micro-instabilities is one of the key topics of magnetic confinement fusion. This work focuses on the quasi-coherent spectra of ion temperature gradient (ITG) and trapped-electron-mode instabilities using newly developed far-forward collective scattering measurements within ohmic plasmas in the J-TEXT tokamak. The ITG mode is characterized by frequencies ranging from 30 to 100 kHz and wavenumbers ($k_{\theta}\rho_{\rm s})$ less than 0.3. Beyond a critical plasma density threshold, the ITG mode undergoes a bifurcation, which is marked by a reduction in frequency and an enhancement in amplitude. Concurrently, enhancements in ion energy loss and degradation in confinement are observed. This ground-breaking discovery represents the first instance of direct experimental evidence that establishes a clear link between ITG instability and ion thermal transport.
|
|
Received: 01 November 2023
Published: 15 May 2024
|
|
|
|
|
|
[1] | Garbet X, Mantica P, Angioni C et al. 2004 Plasma Phys. Control. Fusion 46 B557 |
[2] | Bourdelle C 2005 Plasma Phys. Control. Fusion 47 A317 |
[3] | Wan B and EAST team 2020 Chin. Phys. Lett. 37 045202 |
[4] | Hu W, Feng H Y, and Zhang W L 2019 Chin. Phys. Lett. 36 085201 |
[5] | Cowley S C, Kulsrud R M, and Sudan R 1991 Phys. Fluids B 3 2767 |
[6] | Horton W 1999 Rev. Mod. Phys. 71 735 |
[7] | Dimits A M, Williams T J, Byers J A, and Cohen B I 1996 Phys. Rev. Lett. 77 71 |
[8] | Horton W, Lindberg D, Kim J Y, Dong J Q, Hammett G W, Scott S D, Zarnstorff M C, and Hamaguchi S 1992 Phys. Fluids B 4 953 |
[9] | Li J, Xu J Q, Qu Y R, Lin Z, Dong J Q, Peng X D, and Li J Q 2023 Nucl. Fusion 63 096005 |
[10] | Li J C, Dong J Q, and Liu S F 2020 Plasma Sci. Technol. 22 055101 |
[11] | Brower D L, Peebles W A, Kim S K, Luhmann Jr N C, Tang W M, and Phillips P E 1987 Phys. Rev. Lett. 59 48 |
[12] | Rettig C L, Staebler G M, Rhodes T L, Doyle E J, Peebles W A, and Burrell K H 2001 Plasma Phys. Control. Fusion 43 1273 |
[13] | Brower D L, Redi M H, Tang W M et al. 1989 Nucl. Fusion 29 1247 |
[14] | Rettig C L, Rhodes T L, Leboeuf J N, Peebles W A, Doyle E J, Staebler G M, Burrell K H, and Moyer R A 2001 Phys. Plasmas 8 2232 |
[15] | Vershkov V A, Shelukhin D A, Soldatov S V et al. 2005 Nucl. Fusion 45 S203 |
[16] | Arnichand H, Sabot R, Hacquin S et al. 2014 Nucl. Fusion 54 123017 |
[17] | Krämer-Flecken A, Dreval V, Soldatov S et al. 2004 Nucl. Fusion 44 1143 |
[18] | Zhong W L, Shi Z B, Yang Z J, Xiao G L, Yang Z C, Zhang B Y, Shi P W, Du H R, Pan X M, Zhou R B, Wan L H, Zou X L, Xu M, Duan X R, Liu Y, Zhuang G, HL-2A Team, and J-TEXT Team 2016 Phys. Plasmas 23 060702 |
[19] | Shi P, Chen J, Gao L, Liu Y, Liu H, Zhou Y N, and Zhuang G 2016 Rev. Sci. Instrum. 87 11E110 |
[20] | Zhuang G, Pan Y, Hu X W, Wang Z J, Ding Y H, Zhang M, Gao L, Zhang X Q, Yang Z J, Yu K X, Gentle K W, Huang H, and J-TEXT Team 2011 Nucl. Fusion 51 094020 |
[21] | Zhuang G, Liu Y, Chen J, Gao L, Li Q, Xiong C Y, Shi P, and Zhou Y N 2016 J. Instrum. 11 C02026 |
[22] | Brower D L, Peebles W A, Kim S K, and Luhmann Jr N C 1988 Rev. Sci. Instrum. 59 1559 |
[23] | Cheng Z F, Luo J, Wang Z J, Zhang Z P, Zhang X L, Hou S Y, Cheng C, Li Z, and Zhuang G 2014 Rev. Sci. Instrum. 85 11E423 |
[24] | Weiland J and Nordman H 1991 Nucl. Fusion 31 390 |
[25] | Shi P, Qiu Q S, Zhuang G, Gao L, Zhou Y N, and Zhou C X 2018 Rev. Sci. Instrum. 89 10C110 |
[26] | Shimomura Y, Suzuki N, Sugihara M, Tsuda T, Odajima K, and Tsunematsu T 1985 Japanese Atomic Energy Research Institute Report JAERI-M-85-080 |
[27] | Chen J, Zhuang G, Jian X, Li Q, Liu Y, Gao L, and Wang Z J 2014 Rev. Sci. Instrum. 85 103501 |
[28] | Sen A K, Chen J, and Mauel M 1991 Phys. Rev. Lett. 66 429 |
[29] | Shen Y C, Lyu B, Wang F D, Shi Y J, Wu B, Li Y Y, Fu J, and Wan B N 2016 Chin. Phys. Lett. 33 065205 |
[30] | Li J C, Dong J Q, Ji X Q, and Hu Y J 2021 Chin. Phys. B 30 075203 |
[31] | Li J C, Gong X Y, Dong J Q, Wang J, and Yin L 2016 Chin. Phys. B 25 045201 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|