Chin. Phys. Lett.  2024, Vol. 41 Issue (5): 050301    DOI: 10.1088/0256-307X/41/5/050301
GENERAL |
Experimental Investigation of Lee–Yang Criticality Using Non-Hermitian Quantum System
Ziheng Lan1,2†, Wenquan Liu1,2,4†, Yang Wu1,2*, Xiangyu Ye1,2, Zhesen Yang5, Chang-Kui Duan1,2,3, Ya Wang1,2,3, and Xing Rong1,2,3
1CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
4School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
5Kavli Institute for Theoretical Sciences, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Ziheng Lan, Wenquan Liu, Yang Wu et al  2024 Chin. Phys. Lett. 41 050301
Download: PDF(2206KB)   PDF(mobile)(1396KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Lee–Yang theory clearly demonstrates where the phase transition of many-body systems occurs and the asymptotic behavior near the phase transition using the partition function under complex parameters. The complex parameters make the direct investigation of Lee–Yang theory in practical systems challenging. Here we construct a non-Hermitian quantum system that can correspond to the one-dimensional Ising model with imaginary parameters through the equality of partition functions. By adjusting the non-Hermitian parameter, we successfully obtain the partition function under different imaginary magnetic fields and observe the Lee–Yang zeros. We also observe the critical behavior of free energy in vicinity of Lee–Yang zero that is consistent with theoretical prediction. Our work provides a protocol to study Lee–Yang zeros of the one-dimensional Ising model using a single-qubit non-Hermitian system.
Received: 23 November 2023      Published: 07 May 2024
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  05.70.Jk (Critical point phenomena)  
  64.60.-i (General studies of phase transitions)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/5/050301       OR      https://cpl.iphy.ac.cn/Y2024/V41/I5/050301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ziheng Lan
Wenquan Liu
Yang Wu
Xiangyu Ye
Zhesen Yang
Chang-Kui Duan
Ya Wang
and Xing Rong
[1]Chandler D 1987 Introduction to Modern Statistical Mechanics (Oxford: Oxford University Press)
[2]Goldenfeld N 1992 Lectures on Phase Transitions and the Renormalization Group (Boulder: Westview Press)
[3] Yang C N and Lee T D 1952 Phys. Rev. 87 404
[4] Lee T D and Yang C N 1952 Phys. Rev. 87 410
[5] Lee J 2013 Phys. Rev. Lett. 110 248101
[6] Lee J 2013 Phys. Rev. E 88 022710
[7] Krasnytska M, Berche B, Holovatch Y, and Kenna R 2015 Europhys. Lett. 111 60009
[8] Krasnytska M, Berche B, Holovatch Y, and Kenna R 2016 J. Phys. A 49 135001
[9] Borrmann P, Mülken O, and Harting J 2000 Phys. Rev. Lett. 84 3511
[10] van Dijk W, Lobo C, MacDonald A, and Bhaduri R K 2015 Can. J. Phys. 93 830
[11] Binek C 1998 Phys. Rev. Lett. 81 5644
[12] Binek C, Kleemann W, and Katori H A 2001 J. Phys.: Condens. Matter 13 L811
[13] Wei B B and Liu R B 2012 Phys. Rev. Lett. 109 185701
[14] Peng X, Zhou H, Wei B B, Cui J, Du J, and Liu R B 2015 Phys. Rev. Lett. 114 010601
[15] Francis A, Zhu D W, Huerta Alderete C, Johri S, Xiao X, Freericks J K, Monroe C, Linke N M, and Kemper A F 2021 Sci. Adv. 7 eabf2447
[16] Suzuki M 1976 Prog. Theor. Phys. 56 1454
[17] Kogut J B 1979 Rev. Mod. Phys. 51 659
[18] Matsumoto N, Nakagawa M, and Ueda M 2022 Phys. Rev. Res. 4 033250
[19] Wu Y, Liu W, Geng J, Song X, Ye X, Duan C K, Rong X, and Du J 2019 Science 364 878
[20] Liu W, Wu Y, Duan C K, Rong X, and Du J 2021 Phys. Rev. Lett. 126 170506
[21] Jacques V, Neumann P, Beck J, Markham M, Twitchen D, Meijer J, Kaiser F, Balasubramanian G, Jelezko F, and Wrachtrup J 2009 Phys. Rev. Lett. 102 057403
[22] Fang S, Zhou Z, and Deng Y 2022 Chin. Phys. Lett. 39 080502
[23] Yin S, Huang G Y, Lo C Y, and Chen P 2017 Phys. Rev. Lett. 118 065701
Related articles from Frontiers Journals
[1] Meng-Jun Hu, Xiao-Min Hu, and Yong-Sheng Zhang. Maxwell Demon and Einstein–Podolsky–Rosen Steering[J]. Chin. Phys. Lett., 2024, 41(5): 050301
[2] Waner Hou, Hao Tang, Qin Xu, and Yiheng Lin. Experimental Proposal on Non-Hermitian Skin Effect by Two-dimensional Quantum Walk with a Single Trapped Ion[J]. Chin. Phys. Lett., 2024, 41(4): 050301
[3] Chang Niu and Sixia Yu. Wave-Particle Duality via Quantum Fisher Information[J]. Chin. Phys. Lett., 2023, 40(11): 050301
[4] Shujuan Yan, Qingyun Xu, Xinyu Hao, Ying Guo, and Jing Guo. Generation of Ultrafast Attosecond Magnetic Field from Ne Dimer in Circularly Polarized Laser Pulses[J]. Chin. Phys. Lett., 2023, 40(11): 050301
[5] Bin-Lin Chen and Dan-Bo Zhang. Variational Quantum Eigensolver with Mutual Variance-Hamiltonian Optimization[J]. Chin. Phys. Lett., 2023, 40(1): 050301
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 050301
[7] Xinran Ma, Z. C. Tu, and Shi-Ju Ran. Deep Learning Quantum States for Hamiltonian Estimation[J]. Chin. Phys. Lett., 2021, 38(11): 050301
[8] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 050301
[9] Hongye Yu, Frank Wilczek, and Biao Wu. Quantum Algorithm for Approximating Maximum Independent Sets[J]. Chin. Phys. Lett., 2021, 38(3): 050301
[10] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 050301
[11] Frank Wilczek, Hong-Ye Hu, Biao Wu. Resonant Quantum Search with Monitor Qubits[J]. Chin. Phys. Lett., 2020, 37(5): 050301
[12] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 050301
[13] Li-Hua Lu, You-Quan Li. Quantum Approach to Fast Protein-Folding Time[J]. Chin. Phys. Lett., 2019, 36(8): 050301
[14] Hongye Yu, Yuliang Huang, Biao Wu. Exact Equivalence between Quantum Adiabatic Algorithm and Quantum Circuit Algorithm[J]. Chin. Phys. Lett., 2018, 35(11): 050301
[15] E. Rezaei Fard, K. Aghayar. Quantum Adiabatic Evolution for Pattern Recognition Problem[J]. Chin. Phys. Lett., 2017, 34(12): 050301
Viewed
Full text


Abstract