Chin. Phys. Lett.  2024, Vol. 41 Issue (4): 047701    DOI: 10.1088/0256-307X/41/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
In-Situ Atomic-Scale Observation of Brownmillerite to Ruddlesden–Popper Phase Transition Tuned by Epitaxial Strain in Cobaltites
Ting Lin1,2, Ang Gao3, Zhexin Tang1,2, Weiguang Lin1,2, Muhua Sun3, Qinghua Zhang1*, Xuefeng Wang1,2, Er-jia Guo1,4, and Lin Gu3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2School of Physical Sciences, University of Chinese Academy of Science, Beijing 100049, China
3Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
4Department of Physics & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article:   
Ting Lin, Ang Gao, Zhexin Tang et al  2024 Chin. Phys. Lett. 41 047701
Download: PDF(6299KB)   PDF(mobile)(6315KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Phase transitions involving oxygen ion extraction within the framework of the crystallographic relevance have been widely exploited for sake of superconductivity, ferromagnetism, and ion conductivity in perovskite-related oxides. However, atomic-scale pathways of phase transitions and ion extraction threshold are inadequately understood. Here we investigate the atomic structure evolution of LaCoO$_{3}$ films upon oxygen extraction and subsequent Co migration, focusing on the key role of epitaxial strain. The brownmillerite to Ruddlesden–Popper phase transitions are discovered to stabilize at distinct crystal orientations in compressive- and tensile-strained cobaltites, which could be attributed to in-plane and out-of-plane Ruddlesden–Popper stacking faults, respectively. A two-stage process from exterior to interior phase transition is evidenced in compressive-strained LaCoO$_{2.5}$, while a single-step nucleation process leaving bottom layer unchanged in tensile-strained situation. Strain analyses reveal that the former process is initiated by an expansion in Co layer at boundary, whereas the latter one is associated with an edge dislocation combined with antiphase boundary. These findings provide a chemo-mechanical perspective on the structure regulation of perovskite oxides and enrich insights into strain-dependent phase diagram in epitaxial oxides films.
Received: 08 March 2024      Editors' Suggestion Published: 21 April 2024
PACS:  77.80.bn (Strain and interface effects)  
  82.60.Nh (Thermodynamics of nucleation)  
  68.37.Ma (Scanning transmission electron microscopy (STEM))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/4/047701       OR      https://cpl.iphy.ac.cn/Y2024/V41/I4/047701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ting Lin
Ang Gao
Zhexin Tang
Weiguang Lin
Muhua Sun
Qinghua Zhang
Xuefeng Wang
Er-jia Guo
and Lin Gu
[1] Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[2] Sun H, Huo M, Hu X, Li J, Liu Z, Han Y, Tang L, Mao Z, Yang P, Wang B, Cheng J, Yao D X, Zhang G M, and Wang M 2023 Nature 621 493
[3] Wu J, Lynn J W, Glinka C J, Burley J, Zheng H, Mitchell J F, and Leighton C 2005 Phys. Rev. Lett. 94 037201
[4] Waser R, Dittmann R, Staikov G, and Szot K 2009 Adv. Mater. 21 2632
[5] Chroneos A, Yildiz B, Tarancón A, Parfitt D, and Kilner J A 2011 Energy & Environ. Sci. 4 2774
[6] Jeen H, Choi W S, Biegalski M D, Folkman C M, Tung I C, Fong D D, Freeland J W, Shin D, Ohta H, Chisholm M F, and Lee H N 2013 Nat. Mater. 12 1057
[7] Shin Y and Galli G 2023 npj Comput. Mater. 9 218
[8] Li D, Wang H, Li K, Zhu B, Jiang K, Backes D, Veiga L S I, Shi J, Roy P, Xiao M, Chen A, Jia Q, Lee T L, Dhesi S S, Scanlon D O, MacManus-Driscoll J L, van Aken P A, Zhang K H L, and Li W 2023 Nat. Commun. 14 3638
[9] Hu K, Zhang X, Chen P, Lin R, Zhu J, Huang Z, Du H, Song D, and Ge B 2022 Mater. Today Phys. 29 100922
[10] Jang J H, Kim Y M, He Q, Mishra R, Qiao L, Biegalski M D, Lupini A R, Pantelides S T, Pennycook S J, Kalinin S V, and Borisevich A Y 2017 ACS Nano 11 6942
[11] Yang Z, Wang L, Dhas J A, Engelhard M H, Bowden M E, Liu W, Zhu Z, Wang C, Chambers S A, Sushko P V, and Du Y 2023 Nat. Commun. 14 6068
[12] Xing Y, Kim I, Kang K T, Park B, Wang Z, Chan Kim J, Jeong H Y, Choi W S, Lee J, and Oh S H 2022 Matter 5 3009
[13] Tsujimoto Y, Tassel C, Hayashi N, Watanabe T, Kageyama H, Yoshimura K, Takano M, Ceretti M, Ritter C, and Paulus W 2007 Nature 450 1062
[14] Inoue S, Kawai M, Ichikawa N, Kageyama H, Paulus W, and Shimakawa Y 2010 Nat. Chem. 2 213
[15] Pan G, Deng Y, Zhao L, Wang H, Wang R, Jin J, Gong Y, and He B 2022 Electrochim. Acta 424 140673
[16] Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, and Hwang H Y 2020 APL Mater. 8 041107
[17] Zhu L, Gao L, Wang L, Xu Z, Wang J, Li X, Liao L, Huang T, Huang H, Ji A, Lu N, Cao Z, Li Q, Sun J R, Yu P, and Bai X 2021 Chem. Mater. 33 3113
[18] Vogt T, Hriljac J A, Hyatt N C, and Woodward P 2003 Phys. Rev. B 67 140401
[19] Capone M, Ridley C J, Funnell N P, Guthrie M, and Bull C L 2019 Phys. Status Solidi A 216 1800736
[20] Rondinelli J M and Spaldin N A 2011 Adv. Mater. 23 3363
[21] Yamamoto T, Chikamatsu A, Kitagawa S, Izumo N, Yamashita S, Takatsu H, Ochi M, Maruyama T, Namba M, Sun W, Nakashima T, Takeiri F, Fujii K, Yashima M, Sugisawa Y, Sano M, Hirose Y, Sekiba D, Brown C M, Honda T, Ikeda K, Otomo T, Kuroki K, Ishida K, Mori T, Kimoto K, Hasegawa T, and Kageyama H 2020 Nat. Commun. 11 5923
[22] Saleem M S, Song C, Gu Y, Chen R, Fayaz M U, Hao Y, and Pan F 2020 Phys. Rev. Mater. 4 014403
[23] Aschauer U, Pfenninger R, Selbach S M, Grande T, and Spaldin N A 2013 Phys. Rev. B 88 054111
[24] Fuchs D, Pinta C, Schwarz T, Schweiss P, Nagel P, Schuppler S, Schneider R, Merz M, Roth G, and v Löhneysen H 2007 Phys. Rev. B 75 144402
[25] Zhang Q H, Meng F Q, Gao A, Li X Y, Jin Q, Lin S, Chen S R, Shang T T, Zhang X, Guo H Z, Wang C, Jin K J, Wang X F, Su D, Gu L, and Guo E J 2021 Nano Lett. 21 10507
[26] Zhang Q, Zhang L Y, Jin C H, Wang Y M, and Lin F 2019 Ultramicroscopy 202 114
[27] Li J, Guan M X, Nan P F, Wang J, Ge B H, Qiao K M, Zhang H R, Liang W H, Hao J Z, Zhou H B, Shen F R, Liang F X, Zhang C, Liu M, Meng S, Zhu T, Hu F X, Wu T, Guo J D, Sun J R, and Shen B G 2020 Nano Energy 78 105215
[28] Coll C, López-Conesa L, Rebled J M, Magén C, Sánchez F, Fontcuberta J, Estradé S, and Peiró F 2017 J. Phys. Chem. C 121 9300
[29] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083
[30] Yang G, El Loubani M, Hill D, Keum J K, and Lee D 2023 Catal. Today 409 87
[31] Lee D and Lee H N 2017 Materials 10 368
[32] Choi W S, Kwon J H, Jeen H, Hamann-Borrero J E, Radi A, Macke S, Sutarto R, He F, Sawatzky G A, Hinkov V, Kim M, and Lee H N 2012 Nano Lett. 12 4966
[33] Yoon S, Gao X, Ok J M, Liao Z, Han M G, Zhu Y, Ganesh P, Chisholm M F, Choi W S, and Lee H N 2021 Nano Lett. 21 4006
[34] Ulvestad A, Singer A, Clark J N, Cho H M, Kim J W, Harder R, Maser J, Meng Y S, and Shpyrko O G 2015 Science 348 1344
[35] Singer A, Zhang M, Hy S, Cela D, Fang C, Wynn T A, Qiu B, Xia Y, Liu Z, Ulvestad A, Hua N, Wingert J, Liu H, Sprung M, Zozulya A V, Maxey E, Harder R, Meng Y S, and Shpyrko O G 2018 Nat. Energy 3 641
[36] Gilbert D A, Grutter A J, Murray P D, Chopdekar R V, Kane A M, Ionin A L, Lee M S, Spurgeon S R, Kirby B J, Maranville B B, N'Diaye A T, Mehta A, Arenholz E, Liu K, Takamura Y, and Borchers J A 2018 Phys. Rev. Mater. 2 104402
[37] Mayeshiba T and Morgan D 2015 Phys. Chem. Chem. Phys. 17 2715
[38] Zhang Q, He X, Shi J, Lu N, Li H, Yu Q, Zhang Z, Chen L Q, Morris B, Xu Q, Yu P, Gu L, Jin K, and Nan C W 2017 Nat. Commun. 8 104
[39] Li H B, Kobayashi S, Zhong C, Namba M, Cao Y, Kato D, Kotani Y, Lin Q, Wu M, Wang W H, Kobayashi M, Fujita K, Tassel C, Terashima T, Kuwabara A, Kobayashi Y, Takatsu H, and Kageyama H 2021 J. Am. Chem. Soc. 143 17517
[40] Chiu I T, Lee M H, Cheng S, Zhang S, Heki L, Zhang Z, Mohtashami Y, Lapa P N, Feng M, Shafer P, N'Diaye A T, Mehta A, Schuller J A, Galli G, Ramanathan S, Zhu Y, Schuller I K, and Takamura Y 2021 Phys. Rev. Mater. 5 064416
[41] Meng X H, Lin T, Mao H, Shi J L, Sheng H, Zou Y G, Fan M, Jiang K, Xiao R J, Xiao D, Gu L, Wan L J, and Guo Y G 2022 J. Am. Chem. Soc. 144 11338
[42] Liu W, Oh P, Liu X, Lee M J, Cho W, Chae S, Kim Y, and Cho J 2015 Angew. Chem. 54 4440
[43] Lin Q, Guan W, Zhou J, Meng J, Huang W, Chen T, Gao Q, Wei X, Zeng Y, Li J, and Zhang Z 2020 Nano Energy 76 105021
[44] Gong Y, Chen Y, Zhang Q, Meng F, Shi J A, Liu X, Liu X, Zhang J, Wang H, Wang J, Yu Q, Zhang Z, Xu Q, Xiao R, Hu Y S, Gu L, Li H, Huang X, and Chen L 2018 Nat. Commun. 9 3341
Related articles from Frontiers Journals
[1] LIU Kun, DUAN Yi-Feng, LV Dong, WU Hong-Bo, QIN Li-Xia, SHI Li-Wei, TANG Gang. Pressure-Induced Cubic-to-Hexagonal Phase Transition in Cu2O[J]. Chin. Phys. Lett., 2014, 31(11): 047701
[2] HU Chuan-Sheng, LUO Zhen-Lin, SUN Xia, PAN Guo-Qiang, HE Qing, WEN Wen, ZHOU Xing-Tai, Ichiro Takeuchi, GAO Chen. Strain Induced Metastable Phase and Phase Revolution in PbTiO3-CoFe2O4 Nanocomposite Film[J]. Chin. Phys. Lett., 2014, 31(1): 047701
[3] ZHOU Shu-Tong, YU Chen-Hui, ZHANG Bo. Temperature Dependence of the AlN E1(To) Phonon Decay, Thermal Expansion and Strain Effect in AlN/Sapphire by Infrared Reflection[J]. Chin. Phys. Lett., 2013, 30(9): 047701
Viewed
Full text


Abstract