FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab |
Ke-Fan Wu1, Hu Zhang1*, and Gui-Hua Tang2 |
1State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China 2MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
|
|
Cite this article: |
Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang 2024 Chin. Phys. Lett. 41 034401 |
|
|
Abstract Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution. In C/SiC composites, the out-of-plane thermal conductivity has mainly been studied, whereas the in-plane thermal conductivity has received less attention due to their limited thickness. In this study, the slab module of a transient plane source method is adopted to measure the in-plane thermal conductivity of a 2D plain woven C/SiC composite slab, and the test uncertainty is analyzed numerically. The numerical investigation proves that the slab module is reliable for measuring the isotropic and anisotropic slabs with in-plane thermal conductivity greater than 10 W$\cdot$m$^{-1}\cdot $K$^{-1}$. The anisotropic thermal conductivity of the 2D plain woven C/SiC composite slab is obtained within the temperature range of 20–900 ℃ by combining with a laser flash analysis method to measure the out-of-plane thermal conductivity. The results demonstrate that the out-of-plane thermal conductivity of C/SiC composite decreases with temperature, while its in-plane thermal conductivity first increases with temperature and then decreases, and the ratio of in-plane thermal conductivity to out-of-plane thermal conductivity is within 2.2–3.1.
|
|
Received: 31 December 2023
Published: 25 March 2024
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
|
|
|
[1] | Yin X W, Cheng L F, Zhang L T, Travitzky N, and Greil P 2017 Int. Mater. Rev. 62 117 |
[2] | Ma S H, Li Y G, Zhou J, and Zhu Z X 2023 Chin. Phys. Lett. 40 084201 |
[3] | Li X H, Yan Q Z, Mi Y Y, Han Y J, Wen X, and Ge C H 2015 Chin. Phys. B 24 026103 |
[4] | Zhang Q M 2011 Adv. Mater. Res. 284–286 324 |
[5] | Cao L Y, Liu Y S, Zhang Y H, Wang J, and Chen J 2020 J. Eur. Ceram. Soc. 40 3520 |
[6] | Naslain R 2004 Compos. Sci. Technol. 64 155 |
[7] | Zhang H, Yang Y, Liu B, and Huang Z R 2019 Ceram. Int. 45 10800 |
[8] | Stalin M, Rajaguru K, and Rangaraj L 2020 J. Eur. Ceram. Soc. 40 290 |
[9] | Caccia M, and Narciso J 2019 Materials 12 2425 |
[10] | Li J, Jiao G Q, Wang B, Yang C P, and Wang G 2014 Chin. J. Aeronaut. 27 1586 |
[11] | Zhang Y H, Liu Y S, Cao Y J, Cao L Y, Zheng X T, Wang J, Pan Y, and Wang N 2021 Ceram. Int. 47 19115 |
[12] | Zhang Y H, Liu Y S, Cao Y J, Cao L Y, Wang J, Pan Y, and Wang N 2021 J. Am. Ceram. Soc. 104 645 |
[13] | Cai Y Z, Cheng L F, Zhang H J, Yin X W, Yin H F, and Yan G Z 2019 J. Alloys Compd. 770 989 |
[14] | Xu Y J, Ren S X, and Zhang W H 2018 Compos. Struct. 193 212 |
[15] | Yang Y, Xu F, Gao X Y, and Liu G W 2016 Mater. & Des. 90 635 |
[16] | Dong K, Liu K, Pan L J, Gu B H, and Sun B Z 2016 Compos. Struct. 154 319 |
[17] | Gou J J, Zhang H, Dai Y J, Li S, and Tao W Q 2015 Compos. Struct. 125 499 |
[18] | Villière M, Lecointe D, Sobotka V, Boyard N, and Delaunay D 2013 Compos. Part A 46 60 |
[19] | Wang Y, Han T C, Liang D F, and Deng L J 2023 Chin. Phys. Lett. 40 104101 |
[20] | Lou Q and Xia M G 2023 Chin. Phys. Lett. 40 094401 |
[21] | Liu Y, Qu Z G, Guo J, and Zhao X M 2019 Int. J. Heat Mass Transfer 140 410 |
[22] | Gou J J, Dai Y J, Li S G, and Tao W Q 2015 Int. J. Heat Mass Transfer 91 829 |
[23] | Li S S, Tong X Y, Yao L J, and Li B 2012 Adv. Mater. Res. 460 342 |
[24] | Choi H I, Zhu F Y, Lim H, and Yun G J 2019 Compos. Part B 177 107375 |
[25] | ISO 8894–1:2010 Refractory Materials—Determination of Thermal Conductivity Part 1: Hot-Wire Methods (Cross-Array and Resistance Thermometer) 2021 |
[26] | Zhang H, Jin Y, Gu W, Li Z Y, and Tao W Q 2013 Prog. Comput. Fluid Dyn. 13 191 |
[27] | Zhang H, Wu K F, Xiao G M, Du X Y, and Tang G H 2021 Compos. Struct. 267 113870 |
[28] | He Y 2005 Thermochim. Acta 436 122 |
[29] | Yan H L, Yan J L, and Zhao G 2019 Chin. Phys. B 28 114401 |
[30] | Zhang H, Shang C Y, and Tang G H 2022 Int. J. Thermal Sci. 171 107261 |
[31] | Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301 |
[32] | Sun Z, Shan Z D, and Shao T M 2021 Int. J. Heat Mass Transfer 170 120973 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|