Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 034401    DOI: 10.1088/0256-307X/41/3/034401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
Ke-Fan Wu1, Hu Zhang1*, and Gui-Hua Tang2
1State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
2MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:   
Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang 2024 Chin. Phys. Lett. 41 034401
Download: PDF(3261KB)   PDF(mobile)(3750KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution. In C/SiC composites, the out-of-plane thermal conductivity has mainly been studied, whereas the in-plane thermal conductivity has received less attention due to their limited thickness. In this study, the slab module of a transient plane source method is adopted to measure the in-plane thermal conductivity of a 2D plain woven C/SiC composite slab, and the test uncertainty is analyzed numerically. The numerical investigation proves that the slab module is reliable for measuring the isotropic and anisotropic slabs with in-plane thermal conductivity greater than 10 W$\cdot$m$^{-1}\cdot $K$^{-1}$. The anisotropic thermal conductivity of the 2D plain woven C/SiC composite slab is obtained within the temperature range of 20–900 ℃ by combining with a laser flash analysis method to measure the out-of-plane thermal conductivity. The results demonstrate that the out-of-plane thermal conductivity of C/SiC composite decreases with temperature, while its in-plane thermal conductivity first increases with temperature and then decreases, and the ratio of in-plane thermal conductivity to out-of-plane thermal conductivity is within 2.2–3.1.
Received: 31 December 2023      Published: 25 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/034401       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/034401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Ke-Fan Wu
Hu Zhang
and Gui-Hua Tang
[1] Yin X W, Cheng L F, Zhang L T, Travitzky N, and Greil P 2017 Int. Mater. Rev. 62 117
[2] Ma S H, Li Y G, Zhou J, and Zhu Z X 2023 Chin. Phys. Lett. 40 084201
[3] Li X H, Yan Q Z, Mi Y Y, Han Y J, Wen X, and Ge C H 2015 Chin. Phys. B 24 026103
[4] Zhang Q M 2011 Adv. Mater. Res. 284–286 324
[5] Cao L Y, Liu Y S, Zhang Y H, Wang J, and Chen J 2020 J. Eur. Ceram. Soc. 40 3520
[6] Naslain R 2004 Compos. Sci. Technol. 64 155
[7] Zhang H, Yang Y, Liu B, and Huang Z R 2019 Ceram. Int. 45 10800
[8] Stalin M, Rajaguru K, and Rangaraj L 2020 J. Eur. Ceram. Soc. 40 290
[9] Caccia M, and Narciso J 2019 Materials 12 2425
[10] Li J, Jiao G Q, Wang B, Yang C P, and Wang G 2014 Chin. J. Aeronaut. 27 1586
[11] Zhang Y H, Liu Y S, Cao Y J, Cao L Y, Zheng X T, Wang J, Pan Y, and Wang N 2021 Ceram. Int. 47 19115
[12] Zhang Y H, Liu Y S, Cao Y J, Cao L Y, Wang J, Pan Y, and Wang N 2021 J. Am. Ceram. Soc. 104 645
[13] Cai Y Z, Cheng L F, Zhang H J, Yin X W, Yin H F, and Yan G Z 2019 J. Alloys Compd. 770 989
[14] Xu Y J, Ren S X, and Zhang W H 2018 Compos. Struct. 193 212
[15] Yang Y, Xu F, Gao X Y, and Liu G W 2016 Mater. & Des. 90 635
[16] Dong K, Liu K, Pan L J, Gu B H, and Sun B Z 2016 Compos. Struct. 154 319
[17] Gou J J, Zhang H, Dai Y J, Li S, and Tao W Q 2015 Compos. Struct. 125 499
[18] Villière M, Lecointe D, Sobotka V, Boyard N, and Delaunay D 2013 Compos. Part A 46 60
[19] Wang Y, Han T C, Liang D F, and Deng L J 2023 Chin. Phys. Lett. 40 104101
[20] Lou Q and Xia M G 2023 Chin. Phys. Lett. 40 094401
[21] Liu Y, Qu Z G, Guo J, and Zhao X M 2019 Int. J. Heat Mass Transfer 140 410
[22] Gou J J, Dai Y J, Li S G, and Tao W Q 2015 Int. J. Heat Mass Transfer 91 829
[23] Li S S, Tong X Y, Yao L J, and Li B 2012 Adv. Mater. Res. 460 342
[24] Choi H I, Zhu F Y, Lim H, and Yun G J 2019 Compos. Part B 177 107375
[25]ISO 8894–1:2010 Refractory Materials—Determination of Thermal Conductivity Part 1: Hot-Wire Methods (Cross-Array and Resistance Thermometer) 2021
[26] Zhang H, Jin Y, Gu W, Li Z Y, and Tao W Q 2013 Prog. Comput. Fluid Dyn. 13 191
[27] Zhang H, Wu K F, Xiao G M, Du X Y, and Tang G H 2021 Compos. Struct. 267 113870
[28] He Y 2005 Thermochim. Acta 436 122
[29] Yan H L, Yan J L, and Zhao G 2019 Chin. Phys. B 28 114401
[30] Zhang H, Shang C Y, and Tang G H 2022 Int. J. Thermal Sci. 171 107261
[31] Jiang J H, Lu S, and Chen J 2023 Chin. Phys. Lett. 40 096301
[32] Sun Z, Shan Z D, and Shao T M 2021 Int. J. Heat Mass Transfer 170 120973
Related articles from Frontiers Journals
[1] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[2] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[3] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[4] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[5] Qi-Hang Yu and Zi-Jing Lin. Solving Quantum Many-Particle Models with Graph Attention Network[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[6] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 034401
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 034401
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 034401
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 034401
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 034401
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 034401
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 034401
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 034401
[14] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 034401
[15] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 034401
Viewed
Full text


Abstract