Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 030202    DOI: 10.1088/0256-307X/41/3/030202
GENERAL |
Solving Quantum Many-Particle Models with Graph Attention Network
Qi-Hang Yu1 and Zi-Jing Lin1,2*
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China
2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Qi-Hang Yu and Zi-Jing Lin 2024 Chin. Phys. Lett. 41 030202
Download: PDF(1251KB)   PDF(mobile)(1294KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Deep learning methods have been shown to be effective in representing ground-state wavefunctions of quantum many-body systems, however the existing approaches cannot be easily used for non-square like or large systems. Here, we propose a variational ansatz based on the graph attention network (GAT) which learns distributed latent representations and can be used on non-square lattices. The GAT-based ansatz has a computational complexity that grows linearly with the system size and can be extended to large systems naturally. Numerical results show that our method achieves the state-of-the-art results on spin-1/2 $J_1$–$J_2$ Heisenberg models over the square, honeycomb, triangular, and kagome lattices with different interaction strengths and lattice sizes (up to $24\times 24$ for square lattice). The method also provides excellent results for the ground states of transverse field Ising models on square lattices. The GAT-based techniques are efficient and versatile and hold promise for studying large quantum many-body systems with exponentially sized objects.
Received: 07 January 2024      Published: 19 March 2024
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/030202       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/030202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi-Hang Yu and Zi-Jing Lin
[1] White S R 1992 Phys. Rev. Lett. 69 2863
[2] Schollwöck U 2011 Ann. Phys. 326 96
[3] Orús R 2014 Ann. Phys. 349 117
[4] Biamonte J and Bergholm V 2017 arXiv:1708.00006v1 [quant-ph]
[5] Choo K, Carleo G, Regnault N, and Neupert T 2018 Phys. Rev. Lett. 121 167204
[6] Ceperley D and Alder B 1986 Science 231 555
[7] Foulkes W M C, Mitas L, Needs R J, and Rajagopal G 2001 Rev. Mod. Phys. 73 33
[8] Carlson J, Gandolfi S, Pederiva F, Pieper S C, Schiavilla R, Schmidt K E, and Wiringa R B 2015 Rev. Mod. Phys. 87 1067
[9] Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94 170201
[10] McMillan W L 1965 Phys. Rev. 138 A442
[11] Becca F and Sorella S 2017 Quantum Monte Carlo Approaches for Correlated Systems (Cambridge: Cambridge University Press)
[12] Hornik K, Stinchcombe M, and White H 1989 Neural Networks 2 359
[13] Cybenko G 1989 Math. Control Signals Syst. 2 303
[14] Hornik K 1991 Neural Networks 4 251
[15] Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002
[16] Carrasquilla J 2020 Adv. Phys.: X 5 1797528
[17] Ma X R, Tu Z C, and Ran S J 2021 Chin. Phys. Lett. 38 110301
[18] Kong J G, Li Q X, Li J, Liu Y, and Zhu J J 2022 Chin. Phys. Lett. 39 067503
[19] Carleo G, Troyer M 2017 Science 355 602
[20] Gao X and Duan L M 2017 Nat. Commun. 8 662
[21] Saito H and Kato M 2018 J. Phys. Soc. Jpn. 87 014001
[22] Liang X, Liu W Y, Lin P Z, Guo G C, Zhang Y S, and He L 2018 Phys. Rev. B 98 104426
[23] Liang X, Dong S J, and He L 2021 Phys. Rev. B 103 035138
[24] Choo K, Neupert T, and Carleo G 2019 Phys. Rev. B 100 125124
[25] Hibat-Allah M, Ganahl M, Hayward L E, Melko R G, and Carrasquilla J 2020 Phys. Rev. Res. 2 023358
[26] Sfondrini A, Cerrillo J, Schuch N, and Cirac J I 2010 Phys. Rev. B 81 214426
[27] Hu W J, Becca F, Parola A, and Sorella S 2013 Phys. Rev. B 88 060402
[28] Ferrari F, Becca F, and Carrasquilla J 2019 Phys. Rev. B 100 125131
[29] Gong S S, Zhu W, Sheng D N, Motrunich O I, and Fisher M P A 2014 Phys. Rev. Lett. 113 027201
[30] Nomura Y and Imada M 2021 Phys. Rev. X 11 031034
[31] Rende R, Viteritti L L, Bardone L, Becca F, and Goldt S 2023 arXiv:2310.05715v1 [cond-mat.str-el]
[32] Reh M, Schmitt M, and Gärttner M 2023 Phys. Rev. B 107 195115)
[33] Schmitt M and Reh M 2022 SciPost Phys. Codebases p 2
[34] Batatia I, Schaaf L L, Chen H, Csányi G, Ortner C, and Faber F A 2023 arXiv:2310.10434v1 [stat.ML]
[35] Veličković P, Cucurull G, Casanova A, Romero A, Liò P, and Bengio Y 2018 arXiv:1710.10903v3 [stat.ML]
[36] Yang L, Hu W, and Li L 2020 arXiv:2011.12453v1 [cond-mat]
[37] Fu C, Zhang X, Zhang H, Ling H, Xu S, and Ji S 2022 arXiv:2206.07370v1 [quant-ph]
[38] Park C Y and Kastoryano M J 2020 Phys. Rev. Res. 2 023232
[39] Szabó A and Castelnovo C 2020 Phys. Rev. Res. 2 033075
[40] Kochkov D, Pfaff T, Sanchez-Gonzalez A, Battaglia P, and Clark B K 2021 arXiv:2110.06390v1 [quant-ph]
[41] Messio L, Lhuillier C, and Misguich G 2011 Phys. Rev. B 83 184401
[42] Wen X G 2002 Phys. Rev. B 65 165113
[43] Battaglia P W, Hamrick J B, Bapst V et al. 2018 arXiv:1806.01261v3 [cs.LG]
[44]Bishop C M 2006 Pattern Recognition And Machine Learning (New York: Springer)
[45] He K M, Zhang X Y, Ren S Q, and Sun J 2016 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Las Vegas, USA, June 26–July 1, 2016) p 770
[46] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, and Polosukhin I 2017 arXiv:1706.03762 [cs.CL]
[47] Devlin J, Chang M W, Lee K, and Toutanova K 2019 arXiv:1810.04805v2 [cs.CL]
[48] Goodall R E A and Lee A A 2020 Nat. Commun. 11 6280
[49] Xie T, France-Lanord A, Wang Y, Shao-Horn Y, and Grossman J C 2019 Nat. Commun. 10 2667
[50] Viteritti L L, Rende R, and Becca F 2023 Phys. Rev. Lett. 130 236401
[51] von Glehn I, Spencer J S, and Pfau D 2023 arXiv:2211.13672v2 [physics.chem-ph]
[52] Cai C and Wang Y S 2020 arXiv:2006.13318v1 [cs.LG]
[53] Kadanoff L P 2000 Statistical Physics: Statics, Dynamics and Renormalization (Singapore: World Scientific)
[54] Yang X C, Xie Z Y, and Yang X T 2023 Chin. Phys. Lett. 40 020501
[55] Ba J L, Kiros J R, and Hinton G E 2016 arXiv: 1607.06450v1 [stat.ML]
[56] Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148
[57] Zhitomirsky M E and Ueda K 1996 Phys. Rev. B 54 9007
[58] Capriotti L, Becca F, Parola A, and Sorella S 2001 Phys. Rev. Lett. 87 097201
[59] Jiang H C, Yao H, and Balents L 2012 Phys. Rev. B 86 024424
[60] Albuquerque A F, Schwandt D, Hetényi B, Capponi S, Mambrini M, and Läuchli A M 2011 Phys. Rev. B 84 024406
[61] Mosadeq H, Shahbazi F, and Jafari S A 2011 J. Phys.: Condens. Matter 23 226006
[62] Liu W Y, Gong S S, Li Y B, Poilblanc D, Chen W Q, and Gu Z C 2022 Sci. Bull. 67 1034
[63]Bukov M, Schmitt M, and Dupont M 2021 SciPost Phys. 10 147
[64] Li M F, Chen J S, Xiao Q, Wang F, Jiang Q C, Zhao X C, Lin R F, An H, Liang X, and He L X 2022 IEEE Trans. Parallel Distrib. Syst. 33 2846
[65] Schulz H J, Ziman T A L, and Poilblanc D 1996 J. Phys. I France 6 675
[66] Mezzacapo F, Schuch N, Boninsegni M, and Cirac J I 2009 New J. Phys. 11 083026
[67] Marshall W and Peierls R E 1955 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 232 48
[68] Wang J Q, He R Q, and Lu Z Y 2023 arXiv:2308.09664v1 [cond-mat.str-el]
[69] Sandvik A W and Evertz H G 2010 Phys. Rev. B 82 024407
[70] Luo D and Clark B K 2019 Phys. Rev. Lett. 122 226401
[71] Chen A and Heyl M 2023 arXiv:2302.01941v2 [cond-mat.dis-nn]
[72] Qian X J and Qin M P 2022 Phys. Rev. B 105 205102
[73] Qian X J and Qin M P 2023 Chin. Phys. Lett. 40 057102
Related articles from Frontiers Journals
[1] Ke-Fan Wu, Hu Zhang, and Gui-Hua Tang. Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[2] Yiwen Han and Wei Yi. Tuning Excitation Transport in a Dissipative Rydberg Ring[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[3] Bo Li, Xu-Tao Zeng, Qianhui Xu, Fan Yang, Junsen Xiang, Hengyang Zhong, Sihao Deng, Lunhua He, Juping Xu, Wen Yin, Xingye Lu, Huiying Liu, Xian-Lei Sheng, and Wentao Jin. C-Type Antiferromagnetic Structure of Topological Semimetal CaMnSb$_2$[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[4] Xiao-Yun Wang, Chen Dong, and Xiang Liu. Analysis of Strong Coupling Constant with Machine Learning and Its Application[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[5] Jianzhi Chen, Aoqian Shi, Yuchen Peng, Peng Peng, and Jianjun Liu. Hybrid Skin-Topological Effect Induced by Eight-Site Cells and Arbitrary Adjustment of the Localization of Topological Edge States[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[6] Pan-Pan Shi, Vadim Baru, Feng-Kun Guo, Christoph Hanhart, and Alexey Nefediev. Production of the $X(4014)$ as the Spin-2 Partner of $X(3872)$ in $e^+e^-$ Collisions[J]. Chin. Phys. Lett., 2024, 41(3): 030202
[7] John Paul Strachan. Unleashing the Power of Moiré Materials in Neuromorphic Computing[J]. Chin. Phys. Lett., 2023, 40(12): 030202
[8] Xiaozhou Pan, Pengtao Song, and Yvonne Y. Gao. Continuous-Variable Quantum Computation in Circuit QED[J]. Chin. Phys. Lett., 2023, 40(11): 030202
[9] Z. T. Wang, Peng Zhao, Z. H. Yang, Ye Tian, H. F. Yu, and S. P. Zhao. Escaping Detrimental Interactions with Microwave-Dressed Transmon Qubits[J]. Chin. Phys. Lett., 2023, 40(7): 030202
[10] Jierong Huo, Zezhou Xia, Zonglin Li, Shan Zhang, Yuqing Wang, Dong Pan, Qichun Liu, Yulong Liu, Zhichuan Wang, Yichun Gao, Jianhua Zhao, Tiefu Li, Jianghua Ying, Runan Shang, and Hao Zhang. Gatemon Qubit Based on a Thin InAs-Al Hybrid Nanowire[J]. Chin. Phys. Lett., 2023, 40(4): 030202
[11] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 030202
[12] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 030202
[13] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 030202
[14] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 030202
[15] Qi Zhang and Guang-Ming Zhang. Noise-Induced Entanglement Transition in One-Dimensional Random Quantum Circuits[J]. Chin. Phys. Lett., 2022, 39(5): 030202
Viewed
Full text


Abstract