GENERAL |
|
|
|
|
Solving Quantum Many-Particle Models with Graph Attention Network |
Qi-Hang Yu1 and Zi-Jing Lin1,2* |
1 Department of Physics, University of Science and Technology of China, Hefei 230026, China 2 Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Qi-Hang Yu and Zi-Jing Lin 2024 Chin. Phys. Lett. 41 030202 |
|
|
Abstract Deep learning methods have been shown to be effective in representing ground-state wavefunctions of quantum many-body systems, however the existing approaches cannot be easily used for non-square like or large systems. Here, we propose a variational ansatz based on the graph attention network (GAT) which learns distributed latent representations and can be used on non-square lattices. The GAT-based ansatz has a computational complexity that grows linearly with the system size and can be extended to large systems naturally. Numerical results show that our method achieves the state-of-the-art results on spin-1/2 $J_1$–$J_2$ Heisenberg models over the square, honeycomb, triangular, and kagome lattices with different interaction strengths and lattice sizes (up to $24\times 24$ for square lattice). The method also provides excellent results for the ground states of transverse field Ising models on square lattices. The GAT-based techniques are efficient and versatile and hold promise for studying large quantum many-body systems with exponentially sized objects.
|
|
Received: 07 January 2024
Published: 19 March 2024
|
|
PACS: |
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.-a
|
(Quantum information)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.67.Pp
|
(Quantum error correction and other methods for protection against decoherence)
|
|
|
|
|
[1] | White S R 1992 Phys. Rev. Lett. 69 2863 |
[2] | Schollwöck U 2011 Ann. Phys. 326 96 |
[3] | Orús R 2014 Ann. Phys. 349 117 |
[4] | Biamonte J and Bergholm V 2017 arXiv:1708.00006v1 [quant-ph] |
[5] | Choo K, Carleo G, Regnault N, and Neupert T 2018 Phys. Rev. Lett. 121 167204 |
[6] | Ceperley D and Alder B 1986 Science 231 555 |
[7] | Foulkes W M C, Mitas L, Needs R J, and Rajagopal G 2001 Rev. Mod. Phys. 73 33 |
[8] | Carlson J, Gandolfi S, Pederiva F, Pieper S C, Schiavilla R, Schmidt K E, and Wiringa R B 2015 Rev. Mod. Phys. 87 1067 |
[9] | Troyer M and Wiese U J 2005 Phys. Rev. Lett. 94 170201 |
[10] | McMillan W L 1965 Phys. Rev. 138 A442 |
[11] | Becca F and Sorella S 2017 Quantum Monte Carlo Approaches for Correlated Systems (Cambridge: Cambridge University Press) |
[12] | Hornik K, Stinchcombe M, and White H 1989 Neural Networks 2 359 |
[13] | Cybenko G 1989 Math. Control Signals Syst. 2 303 |
[14] | Hornik K 1991 Neural Networks 4 251 |
[15] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 |
[16] | Carrasquilla J 2020 Adv. Phys.: X 5 1797528 |
[17] | Ma X R, Tu Z C, and Ran S J 2021 Chin. Phys. Lett. 38 110301 |
[18] | Kong J G, Li Q X, Li J, Liu Y, and Zhu J J 2022 Chin. Phys. Lett. 39 067503 |
[19] | Carleo G, Troyer M 2017 Science 355 602 |
[20] | Gao X and Duan L M 2017 Nat. Commun. 8 662 |
[21] | Saito H and Kato M 2018 J. Phys. Soc. Jpn. 87 014001 |
[22] | Liang X, Liu W Y, Lin P Z, Guo G C, Zhang Y S, and He L 2018 Phys. Rev. B 98 104426 |
[23] | Liang X, Dong S J, and He L 2021 Phys. Rev. B 103 035138 |
[24] | Choo K, Neupert T, and Carleo G 2019 Phys. Rev. B 100 125124 |
[25] | Hibat-Allah M, Ganahl M, Hayward L E, Melko R G, and Carrasquilla J 2020 Phys. Rev. Res. 2 023358 |
[26] | Sfondrini A, Cerrillo J, Schuch N, and Cirac J I 2010 Phys. Rev. B 81 214426 |
[27] | Hu W J, Becca F, Parola A, and Sorella S 2013 Phys. Rev. B 88 060402 |
[28] | Ferrari F, Becca F, and Carrasquilla J 2019 Phys. Rev. B 100 125131 |
[29] | Gong S S, Zhu W, Sheng D N, Motrunich O I, and Fisher M P A 2014 Phys. Rev. Lett. 113 027201 |
[30] | Nomura Y and Imada M 2021 Phys. Rev. X 11 031034 |
[31] | Rende R, Viteritti L L, Bardone L, Becca F, and Goldt S 2023 arXiv:2310.05715v1 [cond-mat.str-el] |
[32] | Reh M, Schmitt M, and Gärttner M 2023 Phys. Rev. B 107 195115) |
[33] | Schmitt M and Reh M 2022 SciPost Phys. Codebases p 2 |
[34] | Batatia I, Schaaf L L, Chen H, Csányi G, Ortner C, and Faber F A 2023 arXiv:2310.10434v1 [stat.ML] |
[35] | Veličković P, Cucurull G, Casanova A, Romero A, Liò P, and Bengio Y 2018 arXiv:1710.10903v3 [stat.ML] |
[36] | Yang L, Hu W, and Li L 2020 arXiv:2011.12453v1 [cond-mat] |
[37] | Fu C, Zhang X, Zhang H, Ling H, Xu S, and Ji S 2022 arXiv:2206.07370v1 [quant-ph] |
[38] | Park C Y and Kastoryano M J 2020 Phys. Rev. Res. 2 023232 |
[39] | Szabó A and Castelnovo C 2020 Phys. Rev. Res. 2 033075 |
[40] | Kochkov D, Pfaff T, Sanchez-Gonzalez A, Battaglia P, and Clark B K 2021 arXiv:2110.06390v1 [quant-ph] |
[41] | Messio L, Lhuillier C, and Misguich G 2011 Phys. Rev. B 83 184401 |
[42] | Wen X G 2002 Phys. Rev. B 65 165113 |
[43] | Battaglia P W, Hamrick J B, Bapst V et al. 2018 arXiv:1806.01261v3 [cs.LG] |
[44] | Bishop C M 2006 Pattern Recognition And Machine Learning (New York: Springer) |
[45] | He K M, Zhang X Y, Ren S Q, and Sun J 2016 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (Las Vegas, USA, June 26–July 1, 2016) p 770 |
[46] | Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł, and Polosukhin I 2017 arXiv:1706.03762 [cs.CL] |
[47] | Devlin J, Chang M W, Lee K, and Toutanova K 2019 arXiv:1810.04805v2 [cs.CL] |
[48] | Goodall R E A and Lee A A 2020 Nat. Commun. 11 6280 |
[49] | Xie T, France-Lanord A, Wang Y, Shao-Horn Y, and Grossman J C 2019 Nat. Commun. 10 2667 |
[50] | Viteritti L L, Rende R, and Becca F 2023 Phys. Rev. Lett. 130 236401 |
[51] | von Glehn I, Spencer J S, and Pfau D 2023 arXiv:2211.13672v2 [physics.chem-ph] |
[52] | Cai C and Wang Y S 2020 arXiv:2006.13318v1 [cs.LG] |
[53] | Kadanoff L P 2000 Statistical Physics: Statics, Dynamics and Renormalization (Singapore: World Scientific) |
[54] | Yang X C, Xie Z Y, and Yang X T 2023 Chin. Phys. Lett. 40 020501 |
[55] | Ba J L, Kiros J R, and Hinton G E 2016 arXiv: 1607.06450v1 [stat.ML] |
[56] | Dagotto E and Moreo A 1989 Phys. Rev. Lett. 63 2148 |
[57] | Zhitomirsky M E and Ueda K 1996 Phys. Rev. B 54 9007 |
[58] | Capriotti L, Becca F, Parola A, and Sorella S 2001 Phys. Rev. Lett. 87 097201 |
[59] | Jiang H C, Yao H, and Balents L 2012 Phys. Rev. B 86 024424 |
[60] | Albuquerque A F, Schwandt D, Hetényi B, Capponi S, Mambrini M, and Läuchli A M 2011 Phys. Rev. B 84 024406 |
[61] | Mosadeq H, Shahbazi F, and Jafari S A 2011 J. Phys.: Condens. Matter 23 226006 |
[62] | Liu W Y, Gong S S, Li Y B, Poilblanc D, Chen W Q, and Gu Z C 2022 Sci. Bull. 67 1034 |
[63] | Bukov M, Schmitt M, and Dupont M 2021 SciPost Phys. 10 147 |
[64] | Li M F, Chen J S, Xiao Q, Wang F, Jiang Q C, Zhao X C, Lin R F, An H, Liang X, and He L X 2022 IEEE Trans. Parallel Distrib. Syst. 33 2846 |
[65] | Schulz H J, Ziman T A L, and Poilblanc D 1996 J. Phys. I France 6 675 |
[66] | Mezzacapo F, Schuch N, Boninsegni M, and Cirac J I 2009 New J. Phys. 11 083026 |
[67] | Marshall W and Peierls R E 1955 Proc. R. Soc. A|Proc. R. Soc. London Ser. A 232 48 |
[68] | Wang J Q, He R Q, and Lu Z Y 2023 arXiv:2308.09664v1 [cond-mat.str-el] |
[69] | Sandvik A W and Evertz H G 2010 Phys. Rev. B 82 024407 |
[70] | Luo D and Clark B K 2019 Phys. Rev. Lett. 122 226401 |
[71] | Chen A and Heyl M 2023 arXiv:2302.01941v2 [cond-mat.dis-nn] |
[72] | Qian X J and Qin M P 2022 Phys. Rev. B 105 205102 |
[73] | Qian X J and Qin M P 2023 Chin. Phys. Lett. 40 057102 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|