Chin. Phys. Lett.  2024, Vol. 41 Issue (3): 030201    DOI: 10.1088/0256-307X/41/3/030201
GENERAL |
Data-Driven Ai- and Bi-Soliton of the Cylindrical Korteweg–de Vries Equation via Prior-Information Physics-Informed Neural Networks
Shifang Tian1, Biao Li1*, and Zhao Zhang2
1School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China
2Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510631, China
Cite this article:   
Shifang Tian, Biao Li, and Zhao Zhang 2024 Chin. Phys. Lett. 41 030201
Download: PDF(1518KB)   PDF(mobile)(1531KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By the modifying loss function MSE and training area of physics-informed neural networks (PINNs), we propose a neural networks model, namely prior-information PINNs (PIPINNs). We demonstrate the advantages of PIPINNs by simulating Ai- and Bi-soliton solutions of the cylindrical Korteweg–de Vries (cKdV) equation. Numerical experiments show that our proposed model is able not only to simulate these solitons using the cKdV equation, but also to significantly improve its simulation capability. Compared with the original PINNs, the prediction accuracy of our proposed model is improved by one to three orders of magnitude. Moreover, the accuracy of the PIPINNs is further improved by adding the restriction of conservation of energy.
Received: 09 January 2024      Published: 30 March 2024
PACS:  02.30.Ik (Integrable systems)  
  02.60.-x (Numerical approximation and analysis)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/3/030201       OR      https://cpl.iphy.ac.cn/Y2024/V41/I3/030201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Shifang Tian
Biao Li
and Zhao Zhang
[1] Maxon S and Viecelli J 1974 Phys. Fluids 17 1614
[2] Stepanyants Y A 1981 Wave Motion 3 335
[3] Nakamura A and Chen H H 1981 J. Phys. Soc. Jpn. 50 711
[4] Hu W C, Ren J L, and Stepanyants Y 2023 Symmetry 15 413
[5] Hu W C, Zhang Z, Guo Q, and Stepanyants Y 2024 Chaos 34 013138
[6] Zhang Z, Hu W C, Guo Q, and Stepanyants Y 2024 Chaos 34 013132
[7] He K M, Zhang X Y, Ren S Q, and Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016, pp 770–778
[8] van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, and Kavukcuoglu K 2016 arXiv:1609.03499 [cs.SD]
[9] Heaton J, Goodfellow I, Bengio Y, and Courville A 2018 Genet. Program. Evolvable Mach. 19 305
[10] Alipanahi B, Delong A, Weirauch M T, and Frey B J 2015 Nat. Biotechnol. 33 831
[11] Raissi M and Karniadakis G E 2018 J. Comput. Phys. 357 125
[12] Lorin E and Yang X 2022 Comput. Phys. Commun. 280 108474
[13] Bihlo A and Popovych R O 2022 J. Comput. Phys. 456 111024
[14] Jagtap A D, Mao Z P, Adams N, and Karniadakis G E 2022 J. Comput. Phys. 466 111402
[15] Peng W Q and Chen Y 2022 Physica D 435 133274
[16] Pu J C and Chen Y 2022 Chaos Solitons & Fractals 160 112182
[17] Lin S N and Chen Y 2022 J. Comput. Phys. 457 111053
[18] Tian S F and Li B 2023 Acta Phys. Sin. 72 100202 (in Chinese)
[19] Li J H and Li B 2022 Chaos Solitons & Fractals 164 112712
[20] Tian S F, Niu Z J, and Li B 2023 Nonlinear Dyn. 111 16467
[21] Tian S F, Cao C C, and Li B 2023 Results Phys. 52 106842
Related articles from Frontiers Journals
[1] Dinghao Zhu and Xiaodong Zhu. Multi-Pseudo Peakons in the $b$-Family Fifth-Order Camassa–Holm Model[J]. Chin. Phys. Lett., 2023, 40(12): 030201
[2] Si-Yu Zhu, De-Xing Kong, and Sen-Yue Lou. Dark Korteweg–De Vrise System and Its Higher-Dimensional Deformations[J]. Chin. Phys. Lett., 2023, 40(8): 030201
[3] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 030201
[4] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 030201
[5] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 030201
[6] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 030201
[7] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[8] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 030201
[9] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 030201
[10] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 030201
[11] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 030201
[12] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[13] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 030201
[14] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 030201
[15] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 030201
Viewed
Full text


Abstract