GENERAL |
|
|
|
|
Tunable Three-Wavelength Fiber Laser and Transient Switching between Three-Wavelength Soliton and Q-Switched Mode-Locked States |
Zhi-Zeng Si, Chao-Qing Dai*, and Wei Liu* |
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China |
|
Cite this article: |
Zhi-Zeng Si, Chao-Qing Dai, and Wei Liu 2024 Chin. Phys. Lett. 41 020502 |
|
|
Abstract We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously. The tuning range is from 1528 nm–1560 nm, and up to three bands of soliton states can be output at the same time. These results are confirmed by a nonlinear Schrödinger equation model based on the split-step Fourier method. In addition, we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state, which is period doubling. These results will promote the development of optical communication, optical sensing and multi-signal pulse emission.
|
|
Received: 27 November 2023
Published: 04 March 2024
|
|
PACS: |
05.45.Yv
|
(Solitons)
|
|
42.65.Yj
|
(Optical parametric oscillators and amplifiers)
|
|
|
|
|
[1] | Xiao Y J, Xing X W, Cui W W, Chen Y Q, and Liu W J 2023 Chin. Phys. Lett. 40 054201 |
[2] | Wang H Y, Xiao Y J, Liu Q, Yang H J, and Liu W J 2023 Chin. Phys. Lett. 40 114204 |
[3] | Fang Y, Han H B, Bo W B, Liu W, Wang Y Y, and Dai C Q 2023 Opt. Lett. 48 779 |
[4] | Fontaine N K, Carpenter J, Gross S, Leon-Saval S, Richardson D J, and Amezcua-Correa R 2022 Proc. IEEE 110 1821 |
[5] | Kudelin I, Sugavanam S, and Chernysheva M 2021 Sensors 21 3530 |
[6] | Zhou Q, Zhong Y, Houria T, Sun Y Z, Liu W J, and Anjan B 2022 Chin. Phys. Lett. 39 044202 |
[7] | Gui L L, Wang C S, Ding F, Chen H, Xiao X S, Zhang X G, and Xu K 2023 ACS Photonics 10 623 |
[8] | Wang J F, Norwood R A, and Peyghambarian N 2021 Opt. Express 29 38646 |
[9] | Wu D, Saini T S, Sun S Y, Huang M, Fu Q, Ballato J, and Peacock A C 2023 APL Photonics 8 106105 |
[10] | Wang B H, Yu L J, Han H B, Tian Z S, and Wang Y Y 2022 Opt. Laser Technol. 146 107590 |
[11] | Li S C, Xu J M, Liang J R, Ye J, Zhang Y, Leng J Y, and Zhou P 2023 Photonics Res. 11 159 |
[12] | Gong R, Pei L, and Wei H 2023 Front. Phys. 11 1273027 |
[13] | Liu X Y, Sahu J K, and Gumenyuk R 2023 Opt. Lett. 48 612 |
[14] | Cui W W, Xing X W, Chen Y Q, Ye H, and Liu W J 2023 Chin. Phys. Lett. 40 024201 |
[15] | Wang H, Yang Y, Hong J, Zhou X, Ruan Q, Dong Z, Melkumov M, Lobanov A, and Luo Z 2023 Opt. Lett. 48 299 |
[16] | Mao D, Wang H, Zhang H, Zeng C, Du Y, Sun Z, and Zhao J 2021 Nat. Commun. 12 6712 |
[17] | Yu Q X, Liu M Y, Qi Y Y, Luan N N, Bai Z X, Ding J, Wang Y Z, and Lu Z W 2023 IEEE Photonics Technol. Lett. 35 1043 |
[18] | Du Y Q, He Z W, Zhang H Z, Gao Q, Mao D, and Zhao J L 2022 Phys. Rev. A 106 053509 |
[19] | Wang W Y, Xiao B W, Zhao P, Ren L H, Shi L, and Zhang X L 2023 ACS Photonics 10 3656 |
[20] | Li L, Pang L, Wang R, Zhang X, Hui Z, Zhao F, and Liu W 2022 Laser & Photonics Rev. 16 2100255 |
[21] | Pang L H, Zhao M, Zhao Q Y, Li L, Wang R F, Lv Y, and Liu W J 2022 ACS Appl. Mater. & Interfaces 14 55971 |
[22] | Li L, Cheng J, Zhao Q, Zhang J, Yang H, Zhang Y, Zhao F, and Liu W 2023 Opt. Express 31 16872 |
[23] | Zhang Y S, Dai K, and Chen D R 2023 Opt. Laser Technol. 158 108790 |
[24] | Liu M, Li T J, Xu W C, and Luo Z C 2020 Photonics Res. 8 246 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|