Chin. Phys. Lett.  2024, Vol. 41 Issue (2): 020501    DOI: 10.1088/0256-307X/41/2/020501
GENERAL |
Vortex Quantum Droplets under Competing Nonlinearities
Gui-hua Chen1, Hong-cheng Wang1*, Hai-ming Deng2*, and Boris A. Malomed3
1School of Electronic Engineering & Intelligentization, Dongguan University of Technology, Dongguan 523808, China
2School of Physics and Electronic-Electrical Engineering, Xiangnan University, Chenzhou 423000, China
3Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile
Cite this article:   
Gui-hua Chen, Hong-cheng Wang, Hai-ming Deng et al  2024 Chin. Phys. Lett. 41 020501
Download: PDF(28590KB)   PDF(mobile)(28626KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract This concise review summarizes recent advancements in theoretical studies of vortex quantum droplets (VQDs) in matter-wave fields. These are robust self-trapped vortical states in two- and three-dimensional (2D and 3D) Bose–Einstein condensates (BECs) with intrinsic nonlinearity. Stability of VQDs is provided by additional nonlinearities resulting from quantum fluctuations around mean-field states, often referred to as the Lee–Huang–Yang (LHY) corrections. The basic models are presented, with emphasis on the interplay between the mean-field nonlinearity, LHY correction, and spatial dimension, which determines the structure and stability of VQDs. We embark by delineating fundamental properties of VQDs in the 3D free space, followed by consideration of their counterparts in the 2D setting. Additionally, we address stabilization of matter-wave VQDs by optical potentials. Finally, we summarize results for the study of VQDs in the single-component BEC of atoms carrying magnetic moments. In that case, the anisotropy of the long-range dipole-dipole interactions endows the VQDs with unique characteristics. The results produced by the theoretical studies in this area directly propose experiments for the observation of novel physical effects in the realm of quantum matter, and suggest potential applications to the design of new schemes for processing classical and quantum information.
Received: 24 November 2023      Review Published: 02 February 2024
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/2/020501       OR      https://cpl.iphy.ac.cn/Y2024/V41/I2/020501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Gui-hua Chen
Hong-cheng Wang
Hai-ming Deng
and Boris A. Malomed
[1] Yan Y Y and Liu W J 2021 Chin. Phys. Lett. 38 094201
[2] Zhou Q 2022 Chin. Phys. Lett. 39 010501
[3] Zhang Y L, Jia C Y, and Liang Z X 2022 Chin. Phys. Lett. 39 020501
[4] Zhou Q, Zhong Y, Triki H, Sun Y, Xu S, Liu W, and Biswas A 2022 Chin. Phys. Lett. 39 044202
[5] Liu C, Chen S C, Yao X, and Akhmediev N 2022 Chin. Phys. Lett. 39 094201
[6] Ma W X 2022 Chin. Phys. Lett. 39 100201
[7] Lv L Z, Gao P, Yang Z Y, and Yang W L 2022 Phys. Lett. A 438 128124
[8] Cao Y S and Cao J P 2021 Chin. Phys. Lett. 38 080202
[9] Wang S B, Ma G L, Zhang X, and Zhu D Y 2022 Chin. Phys. Lett. 39 114202
[10] Qi Z Q, Zhang Z, and Li B 2021 Chin. Phys. Lett. 38 060501
[11] Yin K H, Cheng X P, and Lin J 2021 Chin. Phys. Lett. 38 080201
[12] Zhang X M, Qin Y H, Ling L M, and Zhao L C 2021 Chin. Phys. Lett. 38 090201
[13] Lou S Y, Jia M, and Hao X Z 2023 Chin. Phys. Lett. 40 020201
[14] Gao P, Wu Z, Yang Z Y, and Yang W L 2021 Chin. Phys. Lett. 38 090302
[15] He J T, Fang P P, and Lin J 2022 Chin. Phys. Lett. 39 020301
[16] Ding C C, Zhou Q, Xu S L, Triki H, Mirzazadeh M, and Liu W J 2023 Chin. Phys. Lett. 40 040501
[17] Zhao Y, Lei Y B, Xu Y X, Xu S L, Triki H, Biswas A, and Zhou Q 2022 Chin. Phys. Lett. 39 034202
[18] Williamson C H K 1996 Annu. Rev. Fluid Mech. 28 477
[19] Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181
[20] Madison K W, Chevy F, Wohlleben W, and Dalibard J 2000 Phys. Rev. Lett. 84 806
[21] Zeng L and Zeng J 2019 Adv. Photonics 1 046004
[22] Salomaa M M and Volovik G E 1987 Rev. Mod. Phys. 59 533
[23] Blatter G, Feigel'man M V, Geshkenbein V B, Larkin A I, and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[24] Barrow J D, Maartens R, and Tsagas C G 2007 Phys. Rep. 449 131
[25] Alder B J and Wainwright T E 1970 Phys. Rev. A 1 18
[26] Battye R A, Cooper N R, and Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401
[27] Dennis M R and Götte J B 2012 Phys. Rev. Lett. 109 183903
[28] Carusotto I and Ciuti C 2013 Rev. Mod. Phys. 85 299
[29] Soskin M, Boriskina S V, Chong Y, Dennis M R, and Desyatnikov A 2017 J. Opt. 19 010401
[30] Shen Y J, Wang X J, Xie Z M, Min C J, Fu X, Liu Q, Gong M, and Yuan X C 2019 Light: Sci. & Appl. 8 90
[31] Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501
[32] Parmee C D, Dennis M R, and Ruostekoski J 2022 Commun. Phys. 5 54; [Erratum: 2022 Commum. Phys. 5 85]
[33] Zhao F Y, Xu X X, He H X, Zhang L, Zhou Y G, Chen Z P, Malomed B A, and Li Y Y 2023 Phys. Rev. Lett. 130 157203
[34]Pismen L M 1999 Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, from Non-Equilibrium Patterns to Cosmic Strings 1st edn (Oxford: Clarendon Press)
[35] Malomed B A 2019 Physica D 399 108
[36] Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267
[37] Guo M Y and Pfau T 2021 Front. Phys. 16 32202
[38] Gross C and Bakr W S 2021 Nat. Phys. 17 1316
[39] Zeiher J, Wolf J, Isaacs J A, Kohler J, and Stamper-Kurn D M 2021 Phys. Rev. X 11 041017
[40] Jayaseelan M, Manikandan S K, Jordan A N, and Bigelow N P 2021 Nat. Commun. 12 1847
[41] Veit C, Zuber N, Herrera-Sancho O A, Anasuri V S V, Schmid T, Meinert F, Löw R, and Pfau T 2021 Phys. Rev. X 11 011036
[42] Anderson M H, Ensher J R, Matthews M R, Wieman C E, and Cornell E A 1995 Science 269 198
[43] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[44] Bradley C C, Sackett C A, Tollett J J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[45] Böttcher F, Schmidt J N, Hertkorn J, Ng K S H, Graham S D, Guo M, Langen T, and Pfau T 2020 Rep. Prog. Phys. 84 012403
[46] Chin C, Grimm R, Julienne P, and Tiesinga E 2010 Rev. Mod. Phys. 82 1225
[47] Lahaye T, Metz J, Fröhlich B, Koch T, Meister M, Griesmaier A, Pfau T, Saito H, Kawaguchi Y, and Ueda M 2008 Phys. Rev. Lett. 101 080401
[48] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A, and Wieman C E 2001 Nature 412 295
[49] Lee T D, Huang K, and Yang C N 1957 Phys. Rev. 106 1135
[50] Petrov D S 2015 Phys. Rev. Lett. 115 155302
[51] Cabrera C R, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P, and Tarruell L 2018 Science 359 301
[52] Cheiney P, Cabrera C R, Sanz J, Naylor B, Tanzi L, and Tarruell L 2018 Phys. Rev. Lett. 120 135301
[53] Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F, Modugno M, Modugno G, Inguscio M, and Fattori M 2018 Phys. Rev. Lett. 120 235301
[54] D'Errico C, Burchianti A, Prevedelli M, Salasnich L, Ancilotto F, Modugno M, Minardi F, and Fort C 2019 Phys. Rev. Res. 1 033155
[55] Kartashov Y V, Malomed B A, Tarruell L, and Torner L 2018 Phys. Rev. A 98 013612
[56] Li Y Y, Chen Z P, Luo Z H, Huang C Q, Tan H S, Pang W, and Malomed B A 2018 Phys. Rev. A 98 063602
[57] Cidrim A, Santos F E A D, Henn E A L, and Macrì T 2018 Phys. Rev. A 98 023618
[58] Zhao F Y, Yan Z T, Cai X Y, Li C L, Chen G L, He H X, Liu B, and Li Y Y 2021 Chaos Solitons & Fractals 152 111313
[59] Zhou Z, Shi Y, Tang S, Deng H, Wang H, He X, and Zhong H 2021 Chaos Solitons & Fractals 150 111193
[60] Sekino Y and Nishida Y 2018 Phys. Rev. A 97 011602
[61] Morera I, Astrakharchik G E, Polls A, and Juliá-Díaz B 2020 Phys. Rev. Res. 2 022008
[62] Hu H and Liu X J 2020 Phys. Rev. Lett. 125 195302
[63] Hu H and Liu X J 2020 Phys. Rev. A 102 053303
[64] Wang J, Liu X J, and Hu H 2021 Chin. Phys. B 30 010306
[65] Zheng Y Y, Chen S T, Huang Z P, Dai S X, Liu B, Li Y Y, and Wang S R 2021 Front. Phys. 16 22501
[66] Wang Y Q, Guo L F, Yi S, and Shi T 2020 Phys. Rev. Res. 2 043074
[67] Guo Z C, Jia F, Li L T, Ma Y F, Hutson J M, Cui X, and Wang D J 2021 Phys. Rev. Res. 3 033247
[68] Liu B, Chen Y X, Yang A W, Cai X Y, Liu Y, Luo Z H, Qin X Z, Jiang X D, Li Y Y, and Malomed B A 2022 New J. Phys. 24 123026
[69] Karpov P and Piazza F 2022 Phys. Rev. Lett. 128 103201
[70] Pan J Q, Yi S, and Shi T 2022 Phys. Rev. Res. 4 043018
[71] Hu Y M, Fei Y F, Chen X L, and Zhang Y B 2022 Front. Phys. 17 61505
[72] Huang H, Wang H C, Chen G H, Chen M N, Lim C S, and Wong K C 2023 Chaos Solitons & Fractals 168 113137
[73] Du X C, Fei Y F, Chen X L, and Zhang Y B 2023 Phys. Rev. A 108 033312
[74] Lv L Z, Gao P, Yang Z Y, and Yang W L 2023 J. Phys. B 56 145002
[75] Tian Y, Pan J, Shi T, and Yi S 2023 Commun. Theor. Phys. 75 125501
[76] Zhang F and Yin L 2022 Chin. Phys. Lett. 39 060301
[77] Edler D, Mishra C, Wächtler F, Nath R, Sinha S, and Santos L 2017 Phys. Rev. Lett. 119 050403
[78] Zin P, Pylak M, Wasak T, Gajda M, and Idziaszek Z 2018 Phys. Rev. A 98 051603
[79] Ilg T, Kumlin J, Santos L, Petrov D S, and Büchler H P 2018 Phys. Rev. A 98 051604
[80] Luo Z H, Pang W, Liu B, Li Y Y, and Malomed B A 2021 Front. Phys. 16 32201
[81] Khan A and Debnath A 2022 Front. Phys. 10 887338
[82] Otajonov S R 2022 J. Phys. B 55 085001
[83] Lin Z D, Xu X X, Chen Z K, Yan Z T, Mai Z J, and Liu B 2021 Commun. Nonlinear Sci. Numer. Simul. 93 105536
[84] Kartashov Y V, Lashkin V M, Modugno M, and Torner L 2022 New J. Phys. 24 073012
[85] Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I, and Pfau T 2016 Nature 530 194
[86] Ferrier-Barbut I, Kadau H, Schmitt M, Wenzel M, and Pfau T 2016 Phys. Rev. Lett. 116 215301
[87] Chomaz L, Baier S, Petter D, Mark M J, Wächtler F, Santos L, and Ferlaino F 2016 Phys. Rev. X 6 041039
[88] Lao J H, Zhou Z, Zhang X L, Ye F Q, and Zhong H H 2021 Commun. Theor. Phys. 73 065103
[89] Zhou Z, Shi Y, Ye F, Chen H, Tang S, Deng H, and Zhong H 2022 Nonlinear Dyn. 110 3769
[90] Song J, Yan Z, and Malomed B A 2023 Chaos 33 033141
[91] Petrov D S and Astrakharchik G E 2016 Phys. Rev. Lett. 117 100401
[92] Kartashov Y V, Malomed B A, and Torner L 2019 Phys. Rev. Lett. 122 193902
[93] Tengstrand M N, Stürmer P, Karabulut Ö E, and Reimann S M 2019 Phys. Rev. Lett. 123 160405
[94] Li Y Y, Luo Z H, Liu Y, Chen Z P, Huang C Q, Fu S H, Tan H S, and Malomed B A 2017 New J. Phys. 19 113043
[95] Huang H, Wang H, Chen M, Lim C S, and Wong K C 2022 Chaos Solitons & Fractals 158 112079
[96] Ferioli G, Semeghini G, Masi L, Giusti G, Modugno G, Inguscio M, Gallemí A, Recati A, and Fattori M 2019 Phys. Rev. Lett. 122 090401
[97] Shamriz E, Chen Z, and Malomed B A 2020 Phys. Rev. A 101 063628
[98] Zhang X L, Xu X X, Zheng Y Y, Chen Z P, Liu B, Huang C Q, Malomed B A, and Li Y Y 2019 Phys. Rev. Lett. 123 133901
[99] Jiang X D, Zeng Y, Ji Y K, Liu B, Qin X Z, and Li Y Y 2022 Chaos Solitons & Fractals 161 112368
[100] Mihalache D, Mazilu D, Malomed B A, and Lederer F 2006 Phys. Rev. A 73 043615
[101] Baizakov B B, Malomed B A, and Salerno M 2003 Europhys. Lett. 63 642
[102] Yang J K and Musslimani Z H 2003 Opt. Lett. 28 2094
[103] Baizakov B B, Malomed B A, and Salerno M 2004 Phys. Rev. A 70 053613
[104] Zhou Z, Yu X, Zou Y, and Zhong H 2019 Commun. Nonlinear Sci. Numer. Simul. 78 104881
[105] Malomed B A 2021 Front. Phys. 16 22504
[106] Vakhitov N G and Kolokolov A A 1973 Radiophys. Quantum Electron. 16 783
[107] Bergé L 1998 Phys. Rep. 303 259
[108] Ostrovskaya E A, Alexander T J, and Kivshar Y S 2006 Phys. Rev. A 74 023605
[109] Xu X X, Ou G H, Chen Z P, Liu B, Chen W C, Malomed B A, and Li Y Y 2021 Adv. Photonics Res. 2 2000082
Related articles from Frontiers Journals
[1] Yongqiang Li, Chengkun Xing, Ming Gong, Guangcan Guo, and Jianmin Yuan. Heteronuclear Magnetisms with Ultracold Spinor Bosonic Gases in Optical Lattices[J]. Chin. Phys. Lett., 2024, 41(2): 020501
[2] Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu. Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice[J]. Chin. Phys. Lett., 2023, 40(8): 020501
[3] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 020501
[4] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 020501
[5] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 020501
[6] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 020501
[7] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 020501
[8] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 020501
[9] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 020501
[10] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 020501
[11] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 020501
[12] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 020501
[13] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 020501
[14] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 020501
[15] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 020501
Viewed
Full text


Abstract