Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117503    DOI: 10.1088/0256-307X/41/11/117503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin Dynamics and Phonons in Chromites CoCr$_{2}$O$_{4}$ and MnCr$_{2}$O$_{4}$
Wei Xu1, Gaoting Lin1, Mingfang Shu1, Jinlong Jiao1, Jinfeng Zhu1, Qingyong Ren2,3,4, Manh Duc Le5, Xuan Luo6, Yuping Sun6,7,11, Yi Liu8, Zhe Qu7, Haidong Zhou9, Shang Gao10, and Jie Ma1,11*
1Key Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3Spallation Neutron Source Science Center, Dongguan 523803, China
4Guangdong Provincial Key Laboratory of Extreme Conditions, Dongguan 523803, China
5ISIS Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
6Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
7Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
8National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
9Department of Physics and Astronomy, University of Tennessee, Knoxville 37996, USA
10Department of Physics, University of Science and Technology of China, Hefei 230026, China
11Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article:   
Wei Xu, Gaoting Lin, Mingfang Shu et al  2024 Chin. Phys. Lett. 41 117503
Download: PDF(2386KB)   PDF(mobile)(2309KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Spinel compounds are of great interest in both fundamental and application-oriented perspectives due to the geometric magnetic frustration inherent to their lattice and the resulting complex magnetic states. Here, we applied x-ray diffraction, magnetization, heat capacity and powder inelastic neutron scattering measurements, along with theoretical calculations, to study the exotic properties of chromite-spinel oxides CoCr$_{2}$O$_{4}$ and MnCr$_{2}$O$_{4}$. The temperature dependence of the phonon spectra provides an insight into the correlation between oxygen motion and the magnetic order, as well as the magnetoelectric effect in the ground state of MnCr$_{2}$O$_{4}$. Moreover, spin-wave excitations in CoCr$_{2}$O$_{4}$ and MnCr$_{2}$O$_{4}$ are compared with Heisenberg model calculations. This approach enables the precise determination of exchange energies and offers a comprehensive understanding of the spin dynamics and relevant exchange interactions in complicated spiral spin ordering.
Received: 16 August 2024      Published: 14 November 2024
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
  75.40.Gb (Dynamic properties?)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117503       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wei Xu
Gaoting Lin
Mingfang Shu
Jinlong Jiao
Jinfeng Zhu
Qingyong Ren
Manh Duc Le
Xuan Luo
Yuping Sun
Yi Liu
Zhe Qu
Haidong Zhou
Shang Gao
and Jie Ma
[1] Moessner R and Chalker J T 1998 Phys. Rev. Lett. 80 2929
[2] Bai X, Paddison J A M, Kapit E, Koohpayeh S M, Wen J J, Dutton S E, Savici A T, Kolesnikov A I, Granroth G E, Broholm C L, Chalker J T, and Mourigal M 2019 Phys. Rev. Lett. 122 097201
[3] Tymoshenko Y V, Onykiienko Y A, Müller T, Thomale R, Rachel S, Cameron A S, Portnichenko P Y, Efremov D V, Tsurkan V, Abernathy D L, Ollivier J, Schneidewind A, Piovano A, Felea V, Loidl A, and Inosov D S 2017 Phys. Rev. X 7 041049
[4] Gao S, Guratinder K, Stuhr U, White J S, Mansson M, Roessli B, Fennell T, Tsurkan V, Loidl A, Ciomaga Hatnean M, Balakrishnan G, Raymond S, Chapon L, Garlea V O, Savici A T, Cervellino A, Bombardi A, Chernyshov D, Rüegg C, Haraldsen J T, and Zaharko O 2018 Phys. Rev. B 97 134430
[5] Lee S H, Broholm C, Ratcliff W, Gasparovic G, Huang Q, Kim T H, and Cheong S W 2002 Nature 418 856
[6] Glazkov V N, Farutin A M, Tsurkan V, von Nidda H A K, and Loidl A 2009 J. Phys.: Conf. Ser. 145 012030
[7] Matsuura K, Sagayama H, Uehara A, Nii Y, Kajimoto R, Kamazawa K, Ikeuchi K, Ji S, Abe N, and Arima T H 2017 Phys. Rev. Lett. 119 017201
[8] Ma J, Lee J H, Hahn S E, Hong T, Cao H B, Aczel A A, Dun Z L, Stone M B, Tian W, Qiu Y, Copley J R D, Zhou H D, Fishman R S, and Matsuda M 2015 Phys. Rev. B 91 020407
[9] Lee J H, Ma J, Hahn S E, Cao H B, Lee M, Hong T, Lee H J, Yeom M S, Okamoto S, Zhou H D, Matsuda M, and Fishman R S 2017 Sci. Rep. 7 17129
[10] Jiao J L, Zhang H P, Huang Q, Wang W, Sinclair R, Wang G, Ren Q, Lin G T, Huq A, Zhou H D, Li M Z, and Ma J 2021 J. Phys.: Condens. Matter 33 134002
[11] Chung J H, Kim J H, Lee S H, Sato T J, Suzuki T, Katsumura M, and Katsufuji T 2008 Phys. Rev. B 77 054412
[12] Kiswandhi A, Ma J, Brooks J S, and Zhou H D 2014 Phys. Rev. B 90 155132
[13] Ma J, Garlea V O, Rondinone A, Aczel A A, Calder S, dela Cruz C, Sinclair R, Tian W, Chi S, Kiswandhi A, Brooks J S, Zhou H D, and Matsuda M 2014 Phys. Rev. B 89 134106
[14] Glazkov V N, Farutin A M, Tsurkan V, von Nidda H A K, and Loidl A 2009 Phys. Rev. B 79 024431
[15] Kemei M C, Barton P T, Moffitt S L, Gaultois M W, Kurzman J A, Seshadri R, Suchomel M R, and Kim Y I 2013 J. Phys.: Condens. Matter 25 326001
[16] Kaplan T A, Dwight K, Lyons D, and Menyuk N 1961 J. Appl. Phys. 32 S13
[17] Dey K, Majumdar S, and Giri S 2014 Phys. Rev. B 90 184424
[18] Yoon D Y, Lee S, Oh Y S, and Kim K H 2010 Phys. Rev. B 82 094448
[19] Tomiyasu K, Fukunaga J, and Suzuki H 2004 Phys. Rev. B 70 214434
[20] Hastings J M and Corliss L M 1962 Phys. Rev. B 126 556
[21] Sinclair R, Ma J, Cao H B, Hong T, Matsuda M, Dun Z L, and Zhou H D 2015 Phys. Rev. B 92 134410
[22] Kitani S, Tachibana M, Taira N, and Kawaji H 2013 Phys. Rev. B 87 064402
[23] Bordács S, Varjas D, Kézsmárki I, Mihály G, Baldassarre L, Abouelsayed A, Kuntscher C A, Ohgushi K, and Tokura Y 2009 Phys. Rev. Lett. 103 077205
[24] Chang L J, Huang D J, Li W H, Cheong S W, Ratcliff W, and Lynn J W 2009 J. Phys.: Condens. Matter 21 456008
[25] Windsor Y W, Piamonteze C, Ramakrishnan M, Scaramucci A, Rettig L, Huever J A, Bothschafter E M, Bingham N S, Alberca A, Avula S R V, Noheda B, and Staub U 2017 Phys. Rev. B 95 224413
[26] Ederer C and Komelj M 2007 Phys. Rev. B 76 064409
[27] Zhang S F and Zhang S S L 2009 Phys. Rev. Lett. 102 086601
[28] Azuah R T, Kneller L R, Qiu Y M et al. 2009 J. Res. Natl. Inst. Stand. Technol. 114 341
[29] Budai J D, Hong J, Manley M E, Specht E D, Li C W, Tischler J Z, Abernathy D L, Said A H, Leu B M, Boatner L A, McQueeney R J, and Delaire O 2014 Nature 515 535
[30] Lin G T, Wang Y Q, Luo X, Ma J, Zhuang H L, Qian D, Yin L H, Chen F C, Yan J, Zhang R R, Zhang S L, Tong W, Song W H, Tong P, Zhu X B, and Sun Y P 2018 Phys. Rev. B 97 064405
[31] Tomiyasu K, Suzuki H, Toki M, Itoh S, Matsuura M, Aso N, and Yamada K 2008 Phys. Rev. Lett. 101 177401
[32] Kocsis V, Bordács S, Varjas D, Penc K, Abouelsayed A, Kuntscher C A, Ohgushi K, Tokura Y, and Kézsmárki I 2013 Phys. Rev. B 87 064416
[33] Sethi A, Byrum T, McAuliffe R D, Gleason S L, Slimak J E, Shoemaker D P, and Cooper S L 2017 Phys. Rev. B 95 174413
[34] Ortega-San-Martín L, Williams A J, Gordon C D, Klemme S, and Attfield J P 2008 J. Phys.: Condens. Matter 20 104238
[35] Kimura S, Sawada Y, Narumi Y, Watanabe K, Hagiwara M, Kindo K, and Ueda H 2015 Phys. Rev. B 92 144410
[36] Fang C M, Loong C K, de Wijs G A, and de With G 2002 Phys. Rev. B 66 144301
[37] Pardo-Sainz M, Toshima A, André G, Basbus J, Cuello G J, Laliena V, Honda T, Otomo T, Inoue K, Hosokoshi Y, Kousaka Y, and Campo J 2023 Phys. Rev. B 107 144401
[38] Mufti N, Nugroho A A, Blake G R, and Palstra T T M 2010 J. Phys.: Condens. Matter 22 075902
[39] McQueeney R J, Yan J Q, Chang S, and Ma J 2008 Phys. Rev. B 78 184417
[40] Ma J, Yan J Q, Diallo S O, Stevens R, Llobet A, Trouw F, Abernathy D L, Stone M B, and McQueeney R J 2011 Phys. Rev. B 84 224115
[41] Verner J H 2010 Numer. Algorithms 53 383
[42] Pohle R, Yan H, and Shannon N 2021 Phys. Rev. B 104 024426
[43] Shu M, Dong W, Jiao J, Wu J, Lin G, Kamiya Y, Hong T, Cao H, Matsuda M, Tian W, Chi S, Ehlers G, Ouyang Z, Chen H, Zou Y, Qu Z, Huang Q, Zhou H, and Ma J 2023 Phys. Rev. B 108 174424
[44] Lin G, Shu M, Zhao Q, Li G, Ma Y, Jiao J, Li Y, Duan G, Huang Q, Sheng J, Kolesnikov A I, Li L, Wu L, Chen H, Yu R, Wang X, Liu Z, Zhou H, and Ma J 2024 Innovat. Mater. 2 100082
[45] Ma J 2023 Nat. Phys. 19 922
Related articles from Frontiers Journals
[1] Weiwei Liu, Zheng Zhang, Dayu Yan, Jianshu Li, Zhitao Zhang, Jianting Ji, Feng Jin, Youguo Shi, and Qingming Zhang. Finite Temperature Magnetism in the Triangular Lattice Antiferromagnet KErTe$_{2}$[J]. Chin. Phys. Lett., 2024, 41(9): 117503
[2] Qiu-Hao Wang, Mei-Yan Ni, Shu-Jing Li, Fa-Wei Zheng, Hong-Yan Lu, and Ping Zhang. Interlayer Magnetic Interaction in the CrI$_3$/CrSe$_2$ Heterostructure[J]. Chin. Phys. Lett., 2024, 41(5): 117503
[3] Qirui Cui, Jinghua Liang, Yingmei Zhu, Xiong Yao, and Hongxin Yang. Quantum Anomalous Hall Effects Controlled by Chiral Domain Walls[J]. Chin. Phys. Lett., 2023, 40(3): 117503
[4] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 117503
[5] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 117503
[6] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 117503
[7] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 117503
[8] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 117503
[9] Weiyi Gong, Ching-Him Leung, Chuen-Keung Sin, Jingzhao Zhang, Xiaodong Zhang, Bin Xi, Junyi Zhu. Stable Intrinsic Long Range Antiferromagnetic Coupling in Dilutely V Doped Chalcopyrite[J]. Chin. Phys. Lett., 2020, 37(2): 117503
[10] Li-Yu HAO, Tie Yang, Ming Tan. Negative Thermal Expansion and Spontaneous Magnetostriction of Nd$_{2}$Fe$_{16.5}$Cr$_{0.5}$ Compound[J]. Chin. Phys. Lett., 2020, 37(1): 117503
[11] Li-Yu HAO, Tie YANG, Xiao-Tian WANG, Ming TAN. Negative Thermal Expansion of the Dy$_{2}$Fe$_{16}$Cr Compound[J]. Chin. Phys. Lett., 2019, 36(6): 117503
[12] Ren-Gui Zhu. Classical Ground State Spin Ordering of the Antiferromagnetic $J_1$–$J_2$ Model[J]. Chin. Phys. Lett., 2019, 36(6): 117503
[13] Weiwei Liu, Zheng Zhang, Jianting Ji, Yixuan Liu, Jianshu Li, Xiaoqun Wang, Hechang Lei, Gang Chen, Qingming Zhang. Rare-Earth Chalcogenides: A Large Family of Triangular Lattice Spin Liquid Candidates[J]. Chin. Phys. Lett., 2018, 35(11): 117503
[14] Xu-Peng Zhao, Da-Hai Wei, Jun Lu, Si-Wei Mao, Zhi-Feng Yu, Jian-Hua Zhao. Tunneling Anisotropic Magnetoresistance in $L1_{0}$-MnGa Based Antiferromagnetic Perpendicular Tunnel Junction[J]. Chin. Phys. Lett., 2018, 35(8): 117503
[15] CHEN Xu-Liang, SONG Wen-Hai, YANG Zhao-Rong. Field-Induced Structural Transition in the Bond Frustrated Spinel ZnCr2Se4[J]. Chin. Phys. Lett., 2015, 32(12): 117503
Viewed
Full text


Abstract