Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117502    DOI: 10.1088/0256-307X/41/11/117502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Microscopic Theory of Nonlinear Hall Effect in Three-Dimensional Magnetic Systems
Wen-Tao Hou1* and Jiadong Zang2
1School of Physical Science and Technology, Tiangong University, Tianjin 300387, China
2Department of Physics and Astronomy, University of New Hampshire, Durham, New Hampshire 03824, USA
Cite this article:   
Wen-Tao Hou and Jiadong Zang 2024 Chin. Phys. Lett. 41 117502
Download: PDF(876KB)   PDF(mobile)(1329KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear Hall effect (NLHE) has been detected in various of condensed matter systems. Unlike linear Hall effect, NLHE may exist in physical systems with broken inversion symmetry in crystals. On the other hand, real space spin texture may also break inversion symmetry and result in NLHE. We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity (NLHC) in three-dimensional magnetic systems. The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture. The leading order contribution of NLHC, $\chi_{abb}$, is proportional to the emergent toroidal moment $\mathcal{T}_{a}^{\rm e}$, which reflects how the spin textures wind in three dimensions.
Received: 12 August 2024      Published: 14 November 2024
PACS:  72.80.-r (Conductivity of specific materials)  
  75.10.-b (General theory and models of magnetic ordering)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  75.76.+j (Spin transport effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117502       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Wen-Tao Hou and Jiadong Zang
[1] Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
[2] Du Z Z, Wang C M, Li S, Lu H Z, and Xie X C 2019 Nat. Commun. 10 3047
[3] Ortix C 2021 Adv. Quantum Technol. 4 2100056
[4] Li R H, Heinonen O G, Burkov A A, and Zhang S S L 2021 Phys. Rev. B 103 045105
[5] Ovalle D G, Pezo A, and Manchon A 2022 Phys. Rev. B 106 214435
[6] Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y et al. 2017 Phys. Rev. Lett. 119 137204
[7] Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, and Wang R Q 2021 Phys. Rev. B 103 155415
[8] Ma Q, Xu S Y, Shen H T, MacNeill D, Fatemi V, Chang T R et al. 2019 Nature 565 337
[9] Zhang C P, Xiao J W, Zhou B T, Hu J X, Xie Y M, Yan B H et al. 2022 Phys. Rev. B 106 L041111
[10] Duan J X, Jian Y, Gao Y, Peng H M, Zhong J r, Feng Q et al. 2022 Phys. Rev. Lett. 129 186801
[11] Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J et al. 2021 Nat. Nanotechnol. 16 421
[12] Gao A Y, Liu Y F, Qiu J X, Ghosh B, Trevisan T V, Onishi Y et al. 2023 Science 381 181
[13] Nandy S and Sodemann I 2019 Phys. Rev. B 100 195117
[14] Xiao C, Du Z Z, and Niu Q 2019 Phys. Rev. B 100 165422
[15] Parker D E, Morimoto T, Orenstein J, and Moore J E 2019 Phys. Rev. B 99 045121
[16] Du Z Z, Wang C M, Sun H P, Lu H Z, and Xie X C 2021 Nat. Commun. 12 5038
[17] Michishita Y and Peters R 2021 Phys. Rev. B 103 195133
[18] Chen R, Du Z Z, Sun H P, Lu H Z, and Xie X C 2024 Phys. Rev. B 110 L081301
[19] Gao Y, Yang S A, and Niu Q 2014 Phys. Rev. Lett. 112 166601
[20] Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806
[21] Lai S, Liu H Y, Zhang Z W, Zhao J Z, Feng X L, Wang N Z et al. 2021 Nat. Nanotechnol. 16 869
[22] Kent N, Reynolds N, Raftrey D, Campbell I T, Virasawmy S, Dhuey S et al. 2021 Nat. Commun. 12 1562
[23] Yu X, Liu Y, Iakoubovskii K V, Nakajima K, Kanazawa N, Nagaosa N, and Tokura Y 2023 Adv. Mater. 35 2210646
[24] Liu Y, Lake R K, and Zang J 2018 Phys. Rev. B 98 174437
[25] Sutcliffe P 2018 J. Phys. A 51 375401
[26] Liu Y Z, Hou W T, Han X F, and Zang J D 2020 Phys. Rev. Lett. 124 127204
[27] Khodzhaev Z and Turgut E 2022 J. Phys.: Condens. Matter 34 225805
[28] Zheng F S, Kiselev N S, Rybakov F N, Yang L Y, Shi W, Blügel S et al. 2023 Nature 623 718
[29] Sutcliffe P 2017 Phys. Rev. Lett. 118 247203
[30] Naya C, Schubring D, Shifman M, and Wang Z 2022 Phys. Rev. B 106 094434
[31] Göbel B, Akosa C A, Tatara G, and Mertig I 2020 Phys. Rev. Res. 2 013315
[32] Liu Y, Watanabe H, and Nagaosa N 2022 Phys. Rev. Lett. 129 267201
[33] Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C et al. 2012 Nat. Phys. 8 301
[34] Nakazawa K, Bibes M, and Kohno H 2018 J. Phys. Soc. Jpn. 87 033705
[35]Mahan G D 2013 Many-Particle Physics (Springer Science & Business Media)
[36]Coleman P 2015 Introduction to Many-Body Physics (Cambridge University Press)
[37] Onoda M, Tatara G, and Nagaosa N 2004 J. Phys. Soc. Jpn. 73 2624
[38] Nakazawa K and Kohno H 2019 Phys. Rev. B 99 174425
[39] Bruno P, Dugaev V K, and Taillefumier M 2004 Phys. Rev. Lett. 93 096806
[40] Dubovik V M and Tugushev V V 1990 Phys. Rep. 187 145
[41] Spaldin N A, Fiebig M, and Mostovoy M 2008 J. Phys.: Condens. Matter 20 434203
[42]D'yakonov M I and Perel V I 1971 Sov. J. Exp. Theor. Phys. 33 1053
[43] Pershoguba S S, Andreoli D, and Zang J 2021 Phys. Rev. B 104 075102
[44] Liu H, Zhao J, Huang Y X, Wu W, Sheng X L, Xiao C, and Yang S A 2021 Phys. Rev. Lett. 127 277202
[45] Wang C, Gao Y, and Xiao D 2021 Phys. Rev. Lett. 127 277201
[46] Chen W, Gu M, Li J, Wang P, and Liu Q 2022 Phys. Rev. Lett. 129 276601
Related articles from Frontiers Journals
[1] N. N. Orlova, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Gate-Dependent Nonlinear Hall Effect at Room Temperature in Topological Semimetal GeTe[J]. Chin. Phys. Lett., 2023, 40(7): 117502
[2] ZHU Li-Li, GAN Xiao-Yu, ZHANG Qing-Hua, LIU Bao-An, XU Ming-Xia, ZHANG Li-Song, XU Xin-Guang, GU Qing-Tian, SUN Xun. Electrical Conduction in Deuterated Ammonium Dihydrogen Phosphate Crystals with Different Degrees of Deuteration[J]. Chin. Phys. Lett., 2015, 32(5): 117502
[3] LENG Sen-Lin, SHI Wei, LI Guo-Rong, ZHENG Liao-Ying. Potential Barrier Behavior of BaTiO3–(Bi0.5Na0.5)TiO3 Positive Temperature Coefficient of Resistivity Ceramic[J]. Chin. Phys. Lett., 2015, 32(4): 117502
[4] WANG Ye-Shuai, XIA Nian-Ming, ZUO Hua-Kun, SHEN Yi-Ning, XIA Zheng-Cai. Switching Behavior Induced by Electric and Magnetic Fields in (La0.73Bi0.27)0.67Ca0.33MnO3[J]. Chin. Phys. Lett., 2014, 31(04): 117502
[5] LU Xiao-Hong, SUN Jiu-Xun, GUO Yang, ZHANG Da. Potential-Dependent Generalized Einstein Relation in Disordered Organic Semiconductors[J]. Chin. Phys. Lett., 2009, 26(8): 117502
[6] CHEN Yuan-Sha, CHEN Li-Ping, LIAN Gui-Jun, XIONG Guang-Cheng. Resistance Switching Characteristic and Charge Carrier Self-Trapping in Epitaxial Pr0.7(Ca1-xSrx)0.3MnO3 Thin Films[J]. Chin. Phys. Lett., 2009, 26(3): 117502
[7] DONG Gui-Fang, LIU Qing-Di, WANG Li-Duo, QIU Yong. Variation of Different Characteristic Parameters of Pentacene/Poly(Methyl Methacrylate) Transistors under Electric Stress[J]. Chin. Phys. Lett., 2008, 25(9): 117502
[8] XIONG Guang-Cheng, CHEN Yuan-Sha, CHEN Li-Ping, LIAN Gui-Jun. Difference of Oxide Hetero-structure Junctions with Semiconductor Electronic Devices[J]. Chin. Phys. Lett., 2008, 25(9): 117502
[9] OUYANG Fang-Ping, XU Hui. Design and First-principles Study of a Fullerene Molecular Device[J]. Chin. Phys. Lett., 2007, 24(8): 117502
[10] OUYANG Fang-Ping, XU Hui. Electronic Transport in Molecular Junction Based on C20 Cages[J]. Chin. Phys. Lett., 2007, 24(4): 117502
[11] ZHU Ke, LI Cheng-Feng, ZHU Zhen-Gang. Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2007, 24(1): 117502
[12] LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 117502
[13] FENG Yi, ZHENG Hai-Wu, ZHU Zhen-Gang, ZU Fang-Qiu. Electrical Conductivity of Aluminum Alloy Foams[J]. Chin. Phys. Lett., 2002, 19(10): 117502
[14] DING Jian-wen, YAN Xiao-hong, FANG Xian-cheng. Temperature-Dependent ac Conductivity of the Fibonacci Lattice[J]. Chin. Phys. Lett., 1999, 16(7): 117502
[15] LIU Kaifeng, WENG Yumin, ZHU Lei*, WANG Shenyi*, ZONG Xiangfu. Photoconductivity Characteristics of Porous Silicon[J]. Chin. Phys. Lett., 1994, 11(5): 117502
Viewed
Full text


Abstract