CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Microscopic Theory of Nonlinear Hall Effect in Three-Dimensional Magnetic Systems |
Wen-Tao Hou1* and Jiadong Zang2 |
1School of Physical Science and Technology, Tiangong University, Tianjin 300387, China 2Department of Physics and Astronomy, University of New Hampshire, Durham, New Hampshire 03824, USA
|
|
Cite this article: |
Wen-Tao Hou and Jiadong Zang 2024 Chin. Phys. Lett. 41 117502 |
|
|
Abstract Nonlinear Hall effect (NLHE) has been detected in various of condensed matter systems. Unlike linear Hall effect, NLHE may exist in physical systems with broken inversion symmetry in crystals. On the other hand, real space spin texture may also break inversion symmetry and result in NLHE. We employ the Feynman diagrammatic technique to calculate non-linear Hall conductivity (NLHC) in three-dimensional magnetic systems. The results connect NLHE with the physical quantity of emergent electrodynamics which originates from the magnetic texture. The leading order contribution of NLHC, $\chi_{abb}$, is proportional to the emergent toroidal moment $\mathcal{T}_{a}^{\rm e}$, which reflects how the spin textures wind in three dimensions.
|
|
Received: 12 August 2024
Published: 14 November 2024
|
|
PACS: |
72.80.-r
|
(Conductivity of specific materials)
|
|
75.10.-b
|
(General theory and models of magnetic ordering)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
75.76.+j
|
(Spin transport effects)
|
|
|
|
|
[1] | Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802 | [2] | Du Z Z, Wang C M, Li S, Lu H Z, and Xie X C 2019 Nat. Commun. 10 3047 | [3] | Ortix C 2021 Adv. Quantum Technol. 4 2100056 | [4] | Li R H, Heinonen O G, Burkov A A, and Zhang S S L 2021 Phys. Rev. B 103 045105 | [5] | Ovalle D G, Pezo A, and Manchon A 2022 Phys. Rev. B 106 214435 | [6] | Yasuda K, Tsukazaki A, Yoshimi R, Kondou K, Takahashi K S, Otani Y et al. 2017 Phys. Rev. Lett. 119 137204 | [7] | Rao W, Zhou Y L, Wu Y J, Duan H J, Deng M X, and Wang R Q 2021 Phys. Rev. B 103 155415 | [8] | Ma Q, Xu S Y, Shen H T, MacNeill D, Fatemi V, Chang T R et al. 2019 Nature 565 337 | [9] | Zhang C P, Xiao J W, Zhou B T, Hu J X, Xie Y M, Yan B H et al. 2022 Phys. Rev. B 106 L041111 | [10] | Duan J X, Jian Y, Gao Y, Peng H M, Zhong J r, Feng Q et al. 2022 Phys. Rev. Lett. 129 186801 | [11] | Kumar D, Hsu C H, Sharma R, Chang T R, Yu P, Wang J et al. 2021 Nat. Nanotechnol. 16 421 | [12] | Gao A Y, Liu Y F, Qiu J X, Ghosh B, Trevisan T V, Onishi Y et al. 2023 Science 381 181 | [13] | Nandy S and Sodemann I 2019 Phys. Rev. B 100 195117 | [14] | Xiao C, Du Z Z, and Niu Q 2019 Phys. Rev. B 100 165422 | [15] | Parker D E, Morimoto T, Orenstein J, and Moore J E 2019 Phys. Rev. B 99 045121 | [16] | Du Z Z, Wang C M, Sun H P, Lu H Z, and Xie X C 2021 Nat. Commun. 12 5038 | [17] | Michishita Y and Peters R 2021 Phys. Rev. B 103 195133 | [18] | Chen R, Du Z Z, Sun H P, Lu H Z, and Xie X C 2024 Phys. Rev. B 110 L081301 | [19] | Gao Y, Yang S A, and Niu Q 2014 Phys. Rev. Lett. 112 166601 | [20] | Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 | [21] | Lai S, Liu H Y, Zhang Z W, Zhao J Z, Feng X L, Wang N Z et al. 2021 Nat. Nanotechnol. 16 869 | [22] | Kent N, Reynolds N, Raftrey D, Campbell I T, Virasawmy S, Dhuey S et al. 2021 Nat. Commun. 12 1562 | [23] | Yu X, Liu Y, Iakoubovskii K V, Nakajima K, Kanazawa N, Nagaosa N, and Tokura Y 2023 Adv. Mater. 35 2210646 | [24] | Liu Y, Lake R K, and Zang J 2018 Phys. Rev. B 98 174437 | [25] | Sutcliffe P 2018 J. Phys. A 51 375401 | [26] | Liu Y Z, Hou W T, Han X F, and Zang J D 2020 Phys. Rev. Lett. 124 127204 | [27] | Khodzhaev Z and Turgut E 2022 J. Phys.: Condens. Matter 34 225805 | [28] | Zheng F S, Kiselev N S, Rybakov F N, Yang L Y, Shi W, Blügel S et al. 2023 Nature 623 718 | [29] | Sutcliffe P 2017 Phys. Rev. Lett. 118 247203 | [30] | Naya C, Schubring D, Shifman M, and Wang Z 2022 Phys. Rev. B 106 094434 | [31] | Göbel B, Akosa C A, Tatara G, and Mertig I 2020 Phys. Rev. Res. 2 013315 | [32] | Liu Y, Watanabe H, and Nagaosa N 2022 Phys. Rev. Lett. 129 267201 | [33] | Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C et al. 2012 Nat. Phys. 8 301 | [34] | Nakazawa K, Bibes M, and Kohno H 2018 J. Phys. Soc. Jpn. 87 033705 | [35] | Mahan G D 2013 Many-Particle Physics (Springer Science & Business Media) | [36] | Coleman P 2015 Introduction to Many-Body Physics (Cambridge University Press) | [37] | Onoda M, Tatara G, and Nagaosa N 2004 J. Phys. Soc. Jpn. 73 2624 | [38] | Nakazawa K and Kohno H 2019 Phys. Rev. B 99 174425 | [39] | Bruno P, Dugaev V K, and Taillefumier M 2004 Phys. Rev. Lett. 93 096806 | [40] | Dubovik V M and Tugushev V V 1990 Phys. Rep. 187 145 | [41] | Spaldin N A, Fiebig M, and Mostovoy M 2008 J. Phys.: Condens. Matter 20 434203 | [42] | D'yakonov M I and Perel V I 1971 Sov. J. Exp. Theor. Phys. 33 1053 | [43] | Pershoguba S S, Andreoli D, and Zang J 2021 Phys. Rev. B 104 075102 | [44] | Liu H, Zhao J, Huang Y X, Wu W, Sheng X L, Xiao C, and Yang S A 2021 Phys. Rev. Lett. 127 277202 | [45] | Wang C, Gao Y, and Xiao D 2021 Phys. Rev. Lett. 127 277201 | [46] | Chen W, Gu M, Li J, Wang P, and Liu Q 2022 Phys. Rev. Lett. 129 276601 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|