Chin. Phys. Lett.  2024, Vol. 41 Issue (11): 117102    DOI: 10.1088/0256-307X/41/11/117102
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Electronic Structure Evolution during Martensitic Phase Transition in All-$d$-Metal Heusler Compounds: The Case of Pd$_{2}$MnTi
Guijiang Li1*, Gang Wang2, and Enke Liu2*
1College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Cite this article:   
Guijiang Li, Gang Wang, and Enke Liu 2024 Chin. Phys. Lett. 41 117102
Download: PDF(2005KB)   PDF(mobile)(2033KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Taking Pd$_{2}$MnTi as a representative example, we systematically investigate and theoretically reveal the electronic structure evolution during martensitic phase transition in all-$d$-metal Heusler compounds. The calculation and theoretical analysis suggest that Pd$_{2}$MnTi is not stable in cubic structure and prone to transform to low-symmetric tetragonal structure. By tetragonal deformation, the shrinkage of lattice parameters and the decrease of symmetry promote the electron accumulation between Pd and its first nearest neighboring Ti atom, resulting in the increasing covalent hybridization. The occurrence of pseudogap in density of states of tetragonal Pd$_{2}$MnTi near the Fermi level also verifies the enhancement of covalent bond. Comparatively, the stronger interatomic bond in tetragonal Pd$_{2}$MnTi, i.e., covalent bond here, would strengthen interatomic coupling and consequently lower the energy of the material. By the martensitic phase transition, more stable states in energy are achieved. Thus, based on the analysis of electronic structure evolution, the nature of martensitic phase transition is a process wherein symmetry breaking weakens the original weak chemical bonds in high-symmetric parent phase and induces the strong chemical bond to lower the energy of the materials and to achieve a more stable state. This study could help to deepen the understanding of martensitic phase transition and the exploration of novel materials for potential technical applications.
Received: 30 August 2024      Published: 25 November 2024
PACS:  31.15.ae (Electronic structure and bonding characteristics)  
  81.30.Kf (Martensitic transformations)  
  71.20.Lp (Intermetallic compounds)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/41/11/117102       OR      https://cpl.iphy.ac.cn/Y2024/V41/I11/117102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guijiang Li
Gang Wang
and Enke Liu
[1] Graf T, Felser C, and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[2] Wei Z Y, Liu E K, Chen J H, Li Y, Liu G D, Luo H Z, Xi X K, Zhang H W, Wang W H, and Wu G H 2015 Appl. Phys. Lett. 107 022406
[3] Li G J, Xu L, and Cao Z H 2023 Phys. Rev. Mater. 7 104411
[4] Li G J, Liu E K, Wang W H, and Wu G H 2023 Phys. Rev. B 107 134440
[5] He P, Yang J, Ren Q, Wang B, Wu G, and Liu E 2024 Chin. Phys. B 33 077201
[6] Peng L, Zhang Q, Wang N et al. 2023 Chin. Phys. B 32 017102
[7] Lv T, Li G, Sun Q, and Zheng Y 2024 J. Mater. Chem. C 12 13562
[8] Li G J, Liu E K, and Wu G H 2022 J. Alloys Compd. 923 166369
[9] Li G, Xu L, and Cao Z 2024 Phys. Chem. Chem. Phys. 26 8318
[10] Yan H L, Wang L D, Liu H X, Huang X M, Jia N, Li Z B, Yang B, Zhang Y D, Esling C, Zhao X, and Zuo L 2019 Mater. & Des. 184 108180
[11] Zhang G, Wang H, Li Z, Yang B, Yan H, Zhao X, and Zuo L 2023 Scr. Mater. 234 115584
[12] Sun S, Bai J, Gu J, Guo K, Morley N, Gao Q, Zhang Y, Esling C, Zhao X, and Zuo L 2024 J. Alloys Compd. 976 173406
[13] Guan Z Q, Bai J, Zhang Y, Gu J L, Morley N, Zhang Y D, Esling C, Zhao X, and Zuo L 2023 Mater. Today Phys. 36 101183
[14] Cong D Y, Xiong W X, Planes A, Ren Y, Mañosa L, Cao P Y, Nie Z H, Sun X M, Yang Z, Hong X F, and Wang Y D 2019 Phys. Rev. Lett. 122 255703
[15] Wei Z Y, Liu E K, Li Y, Han X L, Du Z W, Luo H Z, Liu G D, Xi X K, Zhang H W, Wang W H, and Wu G H 2016 Appl. Phys. Lett. 109 071904
[16] Wei Z, Shen Y, Zhang Z, Guo J, Li B, Liu E, Zhang Z, and Liu J 2020 APL Mater. 8 051101
[17] Liu J 2023 Innovat. Mater. 1 100031
[18] Romero-Muñiz C, Law J Y, Revuelta-Losada J, Moreno-Ramírez L M, and Franco V 2023 Innovat. Mater. 1 100045
[19] Zhang F Q, Batashev I, van Dijk N, and Brück E 2022 Phys. Rev. Appl. 17 054032
[20] Zhang F, Wu Z, Wang J, Chen W, Wu Z, Chi X, Zhao C, Eijt S, Schut H, Bai X, Ren Y, van Dijk N, and Brück E 2024 Acta Mater. 265 119595
[21] Wu M, Zhou F, Khenata R, Kuang M, and Wang X 2020 Front. Chem. 8 546947
[22] Zhang S H, Wang Q, Kawazoe Y, and Jena P 2013 J. Am. Chem. Soc. 135 18216
[23] Silvi B and Savin A 1994 Nature 371 683
[24] Vanderbilt D 1990 Phys. Rev. B 41 7892
[25] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[26] Feng L, Guo C C, Zhang X Y, Xuan H C, Wang W H, Liu E K, and Wu G H 2018 Chin. Phys. Lett. 35 038101
[27] Xu L, Li G, and Cao Z 2024 J. Magn. Magn. Mater. 590 171637
[28] Liu Y, Lyu M, Liu J, Zhang S, Yang J, Du Z, Wang B, Wei H, and Liu E 2023 Chin. Phys. Lett. 40 047102
[29] Lyu M, Liu Y, Zhang S, Liu J, Yang J, Wang Y, Feng Y, Dong X, Wang B, Wei H, and Liu E 2024 Chin. Phys. B 33 107507
[30] Bao L F, Huang W D, and Ren Y J 2016 Chin. Phys. Lett. 33 077502
[31] Zeng Q, Shen J, Liu E, Xi X, Wang W, Wu G, and Zhang X 2020 Chin. Phys. Lett. 37 076101
[32] Faleev S V, Ferrante Y, Jeong J, Samant M G, Jones B, and Parkin S S P 2017 Phys. Rev. Appl. 7 034022
[33] Opeil C P, Mihaila B, Schulze R K, Mañosa L, Planes A, Hults W L, Fisher R A, Riseborough P S, Littlewood P B, Smith J L, and Lashley J C 2008 Phys. Rev. Lett. 100 165703
[34] Winterlik J, Chadov S, Gupta A, Alijani V, Gasi T, Filsinger K, Balke B, Fecher G H, Jenkins C A, Casper F, Kübler J, Liu G D, Gao L, Parkin S S P, and Felser C 2012 Adv. Mater. 24 6283
[35] Li G J, Xu L, and Cao Z H 2023 J. Mater. Chem. C 11 6173
[36] Li G, Liu E, Liu G, Wang W, and Wu G 2021 Chin. Phys. B 30 083103
[37] Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104
[38]Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University Press)
[39] Li G J, Liu E K, Wang W H, and Wu G H 2023 J. Alloys Compd. 956 170389
[40] Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354
[41]Bader R F W 1990 Atoms in Molecules-A Quantum Theory (Oxford: Oxford University Press)
[42] Tian Y, Xu B, and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93
[43]Frantsevich I N, Voronov F F, and Bokuta S A 1983 Elastic Constants and Elastic Moduli of Metals and Insulators Handbook (Kiev: Naukova Dumka)
Related articles from Frontiers Journals
[1] Xiaoyu Wang, Muhammad Faizan, Yuhao Fu, Kun Zhou, Yilin Zhang, Xin He, David J. Singh, and Lijun Zhang. Influence of Local Cation Order on Electronic Structure and Optical Properties of Cation-Disordered Semiconductor AgBiS$_2$[J]. Chin. Phys. Lett., 2024, 41(10): 117102
[2] Xinxin Jiang, Zhikuan Wang, Chong Li, Xuelian Sun, Lei Yang, Dongmei Li, Bin Cui, and Desheng Liu. Hole-Doped Nonvolatile and Electrically Controllable Magnetism in van der Waals Ferroelectric Heterostructures[J]. Chin. Phys. Lett., 2024, 41(5): 117102
[3] Ruoyun Lv, Xigui Yang, Dongwen Yang, Chunyao Niu, Chunxiang Zhao, Jinxu Qin, Jinhao Zang, Fuying Dong, Lin Dong, and Chongxin Shan. Computational Prediction of a Novel Superhard $sp^{3}$ Trigonal Carbon Allotrope with Bandgap Larger than Diamond[J]. Chin. Phys. Lett., 2021, 38(7): 117102
[4] Qi-Xin Liu, Min Liang, Quan Miao, Jin-Juan Zhang, Er-Ping Sun, Ting-Qi Ren. Ab Initio Studies of Radicals HB$X$ ($X$=H, F, Cl, Br): Molecular Structure, Vibrational Frequencies and Potential Energy[J]. Chin. Phys. Lett., 2018, 35(1): 117102
[5] Jing-He Wu, Chang-Xin Liu. Ground-State Structure and Physical Properties of NB$_{2}$ Predicted from First Principles[J]. Chin. Phys. Lett., 2016, 33(03): 117102
[6] Er-Ping Sun, Ting-Qi Ren, Qi-Xin Liu, Quan Miao, Jin-Juan Zhang, Hai-Feng Xu, Bing Yan. Electronic States of Difluorocarbene Calculated by Multireference Configuration Interaction Method[J]. Chin. Phys. Lett., 2016, 33(02): 117102
[7] SUN Er-Ping, LIU Qi-Xin, REN Ting-Qi, SHAN Shi-Min, XU Hai-Feng, YAN Bing. Examination of Potential Energy Curves of CFCl by Multi-reference Configuration Interaction Method[J]. Chin. Phys. Lett., 2015, 32(12): 117102
[8] CHEN Yu-Hong, ZHANG Bing-Wen, ZHANG Cai-Rong, ZHANG Mei-Ling, KANG Long, LUO Yong-Chun. First-Principle Study of H2 Adsorption on Mg3N2(110) Surface[J]. Chin. Phys. Lett., 2014, 31(06): 117102
[9] GAO Hui, SUN Xun, LIU Bao-An, XU Ming-Xia, HU Guo-Hang, XU Xin-Guang, ZHAO Xian. Effect of S Substitution for P Point Defects in KDP Crystals: First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 117102
[10] ZHANG Yue-Xia, KANG Shuai, SHI Ting-Yun. Accurate One-Centre Method for Hydrogen Molecule Ions in Strong Magnetic Field[J]. Chin. Phys. Lett., 2008, 25(11): 117102
[11] I. Guseinov, R. Aydin, A. Bagci. Application of Complete Orthonormal Sets of Ψα-Exponential-Type Orbitals to Accurate Ground and Excited States Calculations of One-Electron Diatomic Molecules Using Single-Zeta Approximation[J]. Chin. Phys. Lett., 2008, 25(8): 117102
Viewed
Full text


Abstract