Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 094401    DOI: 10.1088/0256-307X/40/9/094401
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial
Qi Lou1 and Ming-Gang Xia1,2,3*
1Department of Applied Physics, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
2MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
3Shaanxi Province Key Laboratory of Quantum Information and Optoelectronic Quantum Devices, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
Cite this article:   
Qi Lou and Ming-Gang Xia 2023 Chin. Phys. Lett. 40 094401
Download: PDF(12557KB)   PDF(mobile)(12574KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thermal cloaks offer the potential to conceal internal objects from detection or to prevent thermal shock by controlling external heat flow. However, most conventional natural materials lack the desired flexibility and versatility required for on-demand thermal manipulation. We propose a solution in the form of homogeneous multilayer thermodynamic cloaks. Through an ingenious design, these cloaks achieve exceptional and extreme parameters, enabling the distribution of multiple materials in space. We first investigate the effects of important design parameters on the thermal shielding effectiveness of conventional thermal cloaks. Subsequently, we introduce an autonomous tuning function for the thermodynamic cloak, accomplished by leveraging two phase transition materials as thermal conductive layers. Remarkably, this tuning function does not require any energy input. Finite element analysis results demonstrate a significant reduction in the temperature gradient inside the thermal cloak compared to the surrounding background. This reduction indicates the cloak's remarkable ability to manipulate the spatial thermal field. Furthermore, the utilization of materials undergoing phase transition leads to an increase in thermal conductivity, enabling the cloak to achieve the opposite variation of the temperature field between the object region and the background. This means that, while the temperature gradient within the cloak decreases, the temperature gradient in the background increases. This work addresses a compelling and crucial challenge in the realm of thermal metamaterials, i.e., autonomous tuning of the thermal field without energy input. Such an achievement is currently unattainable with existing natural materials. This study establishes the groundwork for the application of thermal metamaterials in thermodynamic cloaks, with potential extensions into thermal energy harvesting, thermal camouflage, and thermoelectric conversion devices. By harnessing phonons, our findings provide an unprecedented and practical approach to flexibly implementing thermal cloaks and manipulating heat flow.
Received: 30 June 2023      Published: 08 September 2023
PACS:  05.70.-a (Thermodynamics)  
  44.10.+i (Heat conduction)  
  44.90.+c (Other topics in heat transfer)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/094401       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/094401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qi Lou and Ming-Gang Xia
[1] Li J Y, Gao Y, and Huang J P 2010 J. Appl. Phys. 108 074504
[2] Han T C, Bai X, Gao D L, Thong J T L, Li B W, and Qiu C W 2014 Phys. Rev. Lett. 112 054302
[3] Guo J, Xu G, Tian D, Qu Z, and Qiu C W 2022 Adv. Mater. 34 e2201093
[4] Li Y, Qi M, Li J, Cao P C, Wang D, Zhu X F, Qiu C W, and Chen H 2022 Nat. Commun. 13 2683
[5] Veselago V G 1968 Sov. Phys. Usp. 10 509
[6] Shelby R A, Smith D R, and Schultz S 2001 Science 292 77
[7] Landy N I, Sajuyigbe S, Mock J J, Smith D R, and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[8] Alitalo P and Tretyakov S 2009 Mater. Today 12 22
[9] Pendry J B, Schurig D, and Smith D R 2006 Science 312 1780
[10] Leonhardt U 2006 Science 312 1777
[11] Sabah C, Dincer F, Karaaslan M, Akgol O, Demirel E, and Unal E 2014 IEEE Trans. Antennas Propag. 62 5745
[12] Huang L, Fan Y H, Wu S, and Yu L Z 2015 Chin. Phys. Lett. 32 094101
[13] Wen D E, Huang X, Guo L, Yang H, Han S, and Zhang J 2015 Optik 126 1018
[14] Song G Y, Huang B, Dong H Y, Cheng Q, and Cui T J 2016 Sci. Rep. 6 35929
[15] Yang M and Sheng P 2017 Annu. Rev. Mater. Res. 47 83
[16] Elwi T A and Ahmad B A 2018 AEU-Int. J. Electron. Commun. 96 122
[17] Huang L L, Zhang S, and Zentgraf T 2018 Nanophotonics 7 1169
[18] Zhang C, Yin S, Long C, Dong B W, He D, and Cheng Q 2021 Opt. Express 29 14078
[19] Zhang F, Jia Z R, Zhou J X, Liu J K, Wu G F, and Yin P 2022 Chem. Eng. J. 450 138205
[20] Huang X M, Liu Y, Tian Y, Zhang W, Duan Y, Ming T Z, and Xu G L 2020 J. Phys. D 53 115502
[21] Fan C Z, Gao Y, and Huang J P 2008 Appl. Phys. Lett. 92 251907
[22] Li Y and Li J 2021 Chin. Phys. Lett. 38 030501
[23] Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050
[24] Liu Y D, Cheng Y H, Hu R, and Luo X B 2019 Phys. Lett. A 383 2296
[25] Narayana S and Sato Y 2012 Phys. Rev. Lett. 108 214303
[26] Guenneau S and Amra C 2013 Opt. Express 21 6578
[27] Hu R, Huang S Y, Wang M, Zhou L L, Peng X Y, and Luo X B 2018 Phys. Rev. Appl. 10 054032
[28] Zhou S L, Hu R, and Luo X B 2018 Int. J. Heat Mass Transfer 127 607
[29] Hu R, Huang S Y, Wang M, Luo X B, Shiomi J, and Qiu C W 2019 Adv. Mater. 31 e1807849
[30] Hu R, Zhou S L, Li Y, Lei D Y, Luo X, and Qiu C W 2018 Adv. Mater. 30 e1707237
[31] Ji Q X, Chen X Y, Laude V, Liang J, Fang G D, Wang C G, Alaee R, and Kadic M 2023 Chin. J. Aeronaut. 36 212
[32] Zhang J W, Huang S Y, and Hu R 2021 Chin. Phys. Lett. 38 010502
[33] Hu R and Luo X B 2019 Natl. Sci. Rev. 6 1071
[34] Ju R, Xu G, Xu L, Qi M, Wang D, Cao P C, Xi R, Shou Y, Chen H, Qiu C W, and Li Y 2023 Adv. Mater. 35 2209123
[35] Li Y Y, Zhang H C, Chen Y J, and Zhang J 2023 Energy Rep. 9 3716
[36] Schittny R, Kadic M, Guenneau S, and Wegener M 2013 Phys. Rev. Lett. 110 195901
[37] Dai G L, Shang J, and Huang J P 2018 Phys. Rev. E 97 022129
[38] Xu L J, Dai G L, and Huang J P 2020 Phys. Rev. Appl. 13 024063
[39] Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H, and Qiu C W 2021 Nat. Rev. Mater. 6 488
[40] Sha W, Xiao M, Huang M Z, and Gao L 2022 Mater. Today Phys. 28 100880
[41] Zhang Z R, Xu L J, Qu T, Lei M, Lin Z K, Ouyang X P, Jiang J H, and Huang J P 2023 Nat. Rev. Phys. 5 218
[42] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y, and Huang J 2015 Phys. Rev. Lett. 115 195503
[43] Shen X Y, Li Y, Jiang C R, and Huang J P 2016 Phys. Rev. Lett. 117 055501
[44] Shen X Y, Li Y, Jiang C R, Ni Y S, and Huang J P 2016 Appl. Phys. Lett. 109 031907
[45] Lee S, Hippalgaonka K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X, Dames C, Hartnoll S A, Delaire O, and Wu J 2017 Science 355 371
[46] Zhang X K, Li J Y, Lin J C, Tong P, Wang M, Wang X L, Tong H Y, Zhang Y S, Song W H, and Sun Y P 2021 Acta Mater. 208 116709
[47] Chen H Y, Yue Z M, Ren D D, Zeng H R, Wei T R, Zhao K P, Yang R G, Qiu P F, Chen L D, and Shi X 2019 Adv. Mater. 31 e1806518
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 094401
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 094401
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 094401
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 094401
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 094401
[6] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 094401
[7] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 094401
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 094401
[9] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 094401
[10] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 094401
[11] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 094401
[12] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 094401
[13] RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min. A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2014, 31(1): 094401
[14] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 094401
[15] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 094401
Viewed
Full text


Abstract