Chin. Phys. Lett.  2023, Vol. 40 Issue (9): 093701    DOI: 10.1088/0256-307X/40/9/093701
ATOMIC AND MOLECULAR PHYSICS |
Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt
Lei Xu1,2, Ling-Xiao Wang1,2, Guang-Jie Chen1,2, Liang Chen1,2, Yuan-Hao Yang1,2, Xin-Biao Xu1,2, Aiping Liu3, Chuan-Feng Li1,2, Guang-Can Guo1,2,4, Chang-Ling Zou1,2,4*, and Guo-Yong Xiang1,2,4*
1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
3Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
Cite this article:   
Lei Xu, Ling-Xiao Wang, Guang-Jie Chen et al  2023 Chin. Phys. Lett. 40 093701
Download: PDF(8876KB)   PDF(mobile)(8897KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing. Here, we demonstrate a hybrid photonic-atom chip platform based on a GaN-on-sapphire chip and the transport of an ensemble of atoms from free space towards the chip with an optical conveyor belts. Due to our platform's complete optical accessibility and careful control of atomic motion near the chip with a conveyor belt, successful atomic transport towards the chip is made possible. The maximum transport efficiency of atoms is about $50\%$ with a transport distance of $500\,\mathrm{µ m}$. Our results open up a new route toward the efficient loading of cold atoms into the evanescent-field trap formed by the photonic integrated circuits, which promises strong and controllable interactions between single atoms and single photons.
Received: 26 May 2023      Published: 28 August 2023
PACS:  37.10.Gh (Atom traps and guides)  
  42.79.Gn (Optical waveguides and couplers)  
  42.50.-p (Quantum optics)  
  37.10.-x (Atom, molecule, and ion cooling methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/9/093701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I9/093701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Lei Xu
Ling-Xiao Wang
Guang-Jie Chen
Liang Chen
Yuan-Hao Yang
Xin-Biao Xu
Aiping Liu
Chuan-Feng Li
Guang-Can Guo
Chang-Ling Zou
and Guo-Yong Xiang
[1] Chang D E, Douglas J S, González-Tudela A, Hung C L, and Kimble H J 2018 Rev. Mod. Phys. 90 031002
[2] Luan X S, Béguin J B, Burgers A P, Qin Z, Yu S P, and Kimble H J 2020 Adv. Quantum Technol. 3 2000008
[3] Béguin J B, Burgers A P, Luan X, Qin Z, Yu S P, and Kimble H J 2020 Optica 7 1
[4] Wang W Y, Xu Y T, and Chai Z 2022 Adv. Photon. Res. 3 2200153
[5] Bouscal A, Kemiche M, Mahapatra S, Fayard N, Berroir J, Ray T, Greffet J J, Raineri F, Levenson A, Bencheikh K, Sauvan C, Urvoy A, and Laurat J 2023 arXiv:2301.04675 [quant-ph]
[6] Lvovsky A I, Sanders B C, and Tittel W 2009 Nat. Photon. 3 706
[7] Gouraud B, Maxein D, Nicolas A, Morin O, and Laurat J 2015 Phys. Rev. Lett. 114 180503
[8] Pichler H, Choi S, Zoller P, and Lukin M D 2017 Proc. Natl. Acad. Sci. USA 114 11362
[9] Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577
[10] Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473
[11] Kimble H J 2008 Nature 453 1023
[12] Tiecke T, Thompson J D, de Leon N P, Liu L, Vuletić V, and Lukin M D 2014 Nature 508 241
[13] Muralidharan S, Zou C L, Li L, Wen J, and Jiang L 2017 New J. Phys. 19 013026
[14] Stehle C, Zimmermann C, and Slama S 2014 Nat. Phys. 10 937
[15] Stehle C, Bender H, Zimmermann C, Kern D, Fleischer M, and Slama S 2011 Nat. Photon. 5 494
[16] Douglas J S, Habibian H, Hung C L, Gorshkov A V, Kimble H J, and Chang D E 2015 Nat. Photon. 9 326
[17] González-Tudela A, Hung C L, Chang D E, Cirac J I, and Kimble H J 2015 Nat. Photon. 9 320
[18] Zektzer R, Mazurski N, Barash Y, and Levy U 2021 Nat. Photon. 15 772
[19] Sebbag Y, Naiman A, Talker E, Barash Y, and Levy U 2021 ACS Photon. 8 142
[20] Lin Y J, Teper I, Chin C, and Vuletić V 2004 Phys. Rev. Lett. 92 050404
[21] Fortágh J, Ott H, Kraft S, Günther A, and Zimmermann C 2002 Phys. Rev. A 66 041604
[22] Burgers A P, Peng L S, Muniz J A, McClung A C, Martin M J, and Kimble H J 2019 Proc. Natl. Acad. Sci. USA 116 456
[23] Thompson J D, Tiecke T, de Leon N P, Feist J, Akimov A, Gullans M, Zibrov A S, Vuletić V, and Lukin M D 2013 Science 340 1202
[24] Samutpraphoot P, Đorđević T, Ocola P L, Bernien H, Senko C, Vuletić V, and Lukin M D 2020 Phys. Rev. Lett. 124 063602
[25] Đorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, and Lukin M D 2021 Science 373 1511
[26] Kim M E, Chang T H, Fields B M, Chen C A, and Hung C L 2019 Nat. Commun. 10 1647
[27] Zhou X C, Tamura H, Chang T H, and Hung C L 2023 Phys. Rev. Lett. 130 103601
[28] Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, and Kimble H 2006 Nature 443 671
[29] Will E, Masters L, Rauschenbeutel A, Scheucher M, and Volz J 2021 Phys. Rev. Lett. 126 233602
[30] Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S, and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603
[31] Goban A, Choi K, Alton D, Ding D, Lacroûte C, Pototschnig M, Thiele T, Stern N, and Kimble H 2012 Phys. Rev. Lett. 109 033603
[32] Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B, and Laurat J 2019 Nature 566 359
[33] Reitz D, Sayrin C, Mitsch R, Schneeweiss P, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 243603
[34] Hümmer D, Schneeweiss P, Rauschenbeutel A, and Romero-Isart O 2019 Phys. Rev. X 9 041034
[35] Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903
[36] Barnett A H, Smith S P, Olshanii M, Johnson K S, Adams A W, and Prentiss M 2000 Phys. Rev. A 61 023608
[37] Chang T H, Fields B M, Kim M E, and Hung C L 2019 Optica 6 1203
[38] Liu A P, Xu L, Xu X B, Chen G J, Zhang P F, Xiang G Y, Guo G C, Wang Q, and Zou C L 2022 Phys. Rev. A 106 033104
[39] Liu A P, Liu J W, Peng W, Xu X B, Chen G J, Ren X, Wang Q, and Zou C L 2022 Phys. Rev. A 105 053520
[40] Meng Y, Lee J, Dagenais M, and Rolston S 2015 Appl. Phys. Lett. 107 091110
[41] Chen L, Huang C J, Xu X B, Zhang Y C, Ma D Q, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, Dong C H, Liu W, Xiang G Y, Guo G C, and Zou C L 2022 Phys. Rev. Appl. 17 034031
[42] Kuhr S, Alt W, Schrader D, Muller M, Gomer V, and Meschede D 2001 Science 293 278
[43] Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G, and Kuhn A 2005 Phys. Rev. Lett. 95 173602
[44] Dinardo B A and Anderson D Z 2016 Rev. Sci. Instrum. 87 123108
[45] Yu G, Wang G, Ishikawa H, Umeno M, Soga T, Egawa T, Watanabe J, and Jimbo T 1997 Appl. Phys. Lett. 70 3209
[46] Muth J, Brown J D, Johnson M, Yu Z, Kolbas R, Cook J, and Schetzina J 1999 MRS Int. J. Nitride Semicond. Res. 4 502
[47] Liu J, Bo F, Chang L, Dong C H, Ou X, Regan B, Shen X, Song Q, Yao B, Zhang W, Zou C L, and Xiao Y F 2022 Sci. Chin. Phys. Mech. & Astron. 65 104201
[48] Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer)
[49] Ketterle W, Durfee D S, and Stamper-Kurn D 1999 arXiv:cond-mat/9904034
[50] Huet L, Ammar M, Morvan E, Sarazin N, Pocholle J P, Reichel J, Guerlin C, and Schwartz S 2012 Appl. Phys. Lett. 100 121114
[51] Schrader D, Kuhr S, Alt W, Muller M, Gomer V, and Meschede D 2001 Appl. Phys. B 73 819
[52] Hickman G T and Saffman M 2020 Phys. Rev. A 101 063411
Related articles from Frontiers Journals
[1] Zhe Shen and Xin-Yu Huang. Optical Pulling Force in Non-Paraxial Bessel Tractor Beam Generated with Polarization-Insensitive Metasurface[J]. Chin. Phys. Lett., 2023, 40(5): 093701
[2] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan. Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves[J]. Chin. Phys. Lett., 2022, 39(8): 093701
[3] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 093701
[4] Jiang-Ling Yang, Yun Long, Wei-Wei Gao, Lan Jin, Zhan-Chun Zuo, Ru-Quan Wang. Enhanced Loading of $^{40}$K from Natural Abundance Potassium Source with a High Performance 2D$^{+}$ MOT[J]. Chin. Phys. Lett., 2018, 35(3): 093701
[5] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 093701
[6] ZHANG Feng, LONG Yun, YANG Jiang-Ling, MA Guo-Qiang, YIN Ji-Ping, WANG Ru-Quan. High-Performance Sodium Bose–Einstein Condensate Apparatus with a Hybrid Trap and Long-Distance Magnetic Transfer[J]. Chin. Phys. Lett., 2015, 32(12): 093701
[7] LI Wen-Fang, DU Jin-Jin, WEN Rui-Juan, LI Gang, ZHANG Tian-Cai. Trapping and Cooling of Single Atoms in an Optical Microcavity by a Magic-Wavelength Dipole Trap[J]. Chin. Phys. Lett., 2015, 32(10): 093701
[8] WANG Zhong-Kai, HU Dong, NIU Lin-Xiao, ZHANG Jia-Hua, CHEN Xu-Zong, ZHOU Xiao-Ji. The Mode Matching of Hybrid Trap by Frequency Calibration[J]. Chin. Phys. Lett., 2015, 32(5): 093701
[9] WANG Qiang, LIN Yi-Ge, LI Ye, LIN Bai-Ke, MENG Fei, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun. Observation of Spin Polarized Clock Transition in 87Sr Optical Lattice Clock[J]. Chin. Phys. Lett., 2014, 31(12): 093701
[10] GAO Kui-Yi, LUO Xin-Yu, JIA Feng-Dong, YU Cheng-Hui, ZHANG Feng, YIN Ji-Ping, XU Lin, YOU Li, WANG Ru-Quan. Ultra-High Efficiency Magnetic Transport of 87Rb Atoms in a Single Chamber Bose–Einstein Condensation Apparatus[J]. Chin. Phys. Lett., 2014, 31(06): 093701
[11] HE Yue-Hong, SHE Lei, CHEN Yi-He, YANG Yu-Na, LIU Hao, LI Jiao-Mei. Experimental Determination (~mHz) of the Ground-State Hyperfine Separation of Trapped 199Hg+ in a Hyperbolic Paul Trap[J]. Chin. Phys. Lett., 2012, 29(12): 093701
[12] WANG Xiao-Long, CHENG Bing, WU Bin, WANG Zhao-Ying, LIN Qiang** . A Simplified Cold Atom Source for 3-D MOT Loading[J]. Chin. Phys. Lett., 2011, 28(5): 093701
[13] ZHANG Peng-Fei, ZHANG Yu-Chi, LI Gang, DU Jin-Jin, ZHANG Yan-Feng, GUO Yan-Qiang, WANG Jun-Min, ZHANG Tian-Cai**, LI Wei-Dong . Sensitive Detection of Individual Neutral Atoms in a Strong Coupling Cavity QED System[J]. Chin. Phys. Lett., 2011, 28(4): 093701
[14] WANG Qiang**, LIN Bai-Ke, ZHAO Yang, LI Ye, WANG Shao-Kai, WANG Min-Ming, ZANG Er-Jun, LI Tian-Chu, FANG Zhan-Jun . Magneto-Optical Trapping of 88Sr atoms with 689nm Laser[J]. Chin. Phys. Lett., 2011, 28(3): 093701
[15] XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks*[J]. Chin. Phys. Lett., 2010, 27(2): 093701
Viewed
Full text


Abstract