ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Transporting Cold Atoms towards a GaN-on-Sapphire Chip via an Optical Conveyor Belt |
Lei Xu1,2, Ling-Xiao Wang1,2, Guang-Jie Chen1,2, Liang Chen1,2, Yuan-Hao Yang1,2, Xin-Biao Xu1,2, Aiping Liu3, Chuan-Feng Li1,2, Guang-Can Guo1,2,4, Chang-Ling Zou1,2,4*, and Guo-Yong Xiang1,2,4* |
1CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China 2CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China 3Institute of Quantum Information and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210003, China 4Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
|
|
Cite this article: |
Lei Xu, Ling-Xiao Wang, Guang-Jie Chen et al 2023 Chin. Phys. Lett. 40 093701 |
|
|
Abstract Trapped atoms on photonic structures inspire many novel quantum devices for quantum information processing and quantum sensing. Here, we demonstrate a hybrid photonic-atom chip platform based on a GaN-on-sapphire chip and the transport of an ensemble of atoms from free space towards the chip with an optical conveyor belts. Due to our platform's complete optical accessibility and careful control of atomic motion near the chip with a conveyor belt, successful atomic transport towards the chip is made possible. The maximum transport efficiency of atoms is about $50\%$ with a transport distance of $500\,\mathrm{µ m}$. Our results open up a new route toward the efficient loading of cold atoms into the evanescent-field trap formed by the photonic integrated circuits, which promises strong and controllable interactions between single atoms and single photons.
|
|
Received: 26 May 2023
Published: 28 August 2023
|
|
|
|
|
|
[1] | Chang D E, Douglas J S, González-Tudela A, Hung C L, and Kimble H J 2018 Rev. Mod. Phys. 90 031002 |
[2] | Luan X S, Béguin J B, Burgers A P, Qin Z, Yu S P, and Kimble H J 2020 Adv. Quantum Technol. 3 2000008 |
[3] | Béguin J B, Burgers A P, Luan X, Qin Z, Yu S P, and Kimble H J 2020 Optica 7 1 |
[4] | Wang W Y, Xu Y T, and Chai Z 2022 Adv. Photon. Res. 3 2200153 |
[5] | Bouscal A, Kemiche M, Mahapatra S, Fayard N, Berroir J, Ray T, Greffet J J, Raineri F, Levenson A, Bencheikh K, Sauvan C, Urvoy A, and Laurat J 2023 arXiv:2301.04675 [quant-ph] |
[6] | Lvovsky A I, Sanders B C, and Tittel W 2009 Nat. Photon. 3 706 |
[7] | Gouraud B, Maxein D, Nicolas A, Morin O, and Laurat J 2015 Phys. Rev. Lett. 114 180503 |
[8] | Pichler H, Choi S, Zoller P, and Lukin M D 2017 Proc. Natl. Acad. Sci. USA 114 11362 |
[9] | Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577 |
[10] | Lodahl P, Mahmoodian S, Stobbe S, Rauschenbeutel A, Schneeweiss P, Volz J, Pichler H, and Zoller P 2017 Nature 541 473 |
[11] | Kimble H J 2008 Nature 453 1023 |
[12] | Tiecke T, Thompson J D, de Leon N P, Liu L, Vuletić V, and Lukin M D 2014 Nature 508 241 |
[13] | Muralidharan S, Zou C L, Li L, Wen J, and Jiang L 2017 New J. Phys. 19 013026 |
[14] | Stehle C, Zimmermann C, and Slama S 2014 Nat. Phys. 10 937 |
[15] | Stehle C, Bender H, Zimmermann C, Kern D, Fleischer M, and Slama S 2011 Nat. Photon. 5 494 |
[16] | Douglas J S, Habibian H, Hung C L, Gorshkov A V, Kimble H J, and Chang D E 2015 Nat. Photon. 9 326 |
[17] | González-Tudela A, Hung C L, Chang D E, Cirac J I, and Kimble H J 2015 Nat. Photon. 9 320 |
[18] | Zektzer R, Mazurski N, Barash Y, and Levy U 2021 Nat. Photon. 15 772 |
[19] | Sebbag Y, Naiman A, Talker E, Barash Y, and Levy U 2021 ACS Photon. 8 142 |
[20] | Lin Y J, Teper I, Chin C, and Vuletić V 2004 Phys. Rev. Lett. 92 050404 |
[21] | Fortágh J, Ott H, Kraft S, Günther A, and Zimmermann C 2002 Phys. Rev. A 66 041604 |
[22] | Burgers A P, Peng L S, Muniz J A, McClung A C, Martin M J, and Kimble H J 2019 Proc. Natl. Acad. Sci. USA 116 456 |
[23] | Thompson J D, Tiecke T, de Leon N P, Feist J, Akimov A, Gullans M, Zibrov A S, Vuletić V, and Lukin M D 2013 Science 340 1202 |
[24] | Samutpraphoot P, Đorđević T, Ocola P L, Bernien H, Senko C, Vuletić V, and Lukin M D 2020 Phys. Rev. Lett. 124 063602 |
[25] | Đorđević T, Samutpraphoot P, Ocola P L, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, and Lukin M D 2021 Science 373 1511 |
[26] | Kim M E, Chang T H, Fields B M, Chen C A, and Hung C L 2019 Nat. Commun. 10 1647 |
[27] | Zhou X C, Tamura H, Chang T H, and Hung C L 2023 Phys. Rev. Lett. 130 103601 |
[28] | Aoki T, Dayan B, Wilcut E, Bowen W P, Parkins A S, Kippenberg T, Vahala K, and Kimble H 2006 Nature 443 671 |
[29] | Will E, Masters L, Rauschenbeutel A, Scheucher M, and Volz J 2021 Phys. Rev. Lett. 126 233602 |
[30] | Vetsch E, Reitz D, Sagué G, Schmidt R, Dawkins S, and Rauschenbeutel A 2010 Phys. Rev. Lett. 104 203603 |
[31] | Goban A, Choi K, Alton D, Ding D, Lacroûte C, Pototschnig M, Thiele T, Stern N, and Kimble H 2012 Phys. Rev. Lett. 109 033603 |
[32] | Corzo N V, Raskop J, Chandra A, Sheremet A S, Gouraud B, and Laurat J 2019 Nature 566 359 |
[33] | Reitz D, Sayrin C, Mitsch R, Schneeweiss P, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 243603 |
[34] | Hümmer D, Schneeweiss P, Rauschenbeutel A, and Romero-Isart O 2019 Phys. Rev. X 9 041034 |
[35] | Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903 |
[36] | Barnett A H, Smith S P, Olshanii M, Johnson K S, Adams A W, and Prentiss M 2000 Phys. Rev. A 61 023608 |
[37] | Chang T H, Fields B M, Kim M E, and Hung C L 2019 Optica 6 1203 |
[38] | Liu A P, Xu L, Xu X B, Chen G J, Zhang P F, Xiang G Y, Guo G C, Wang Q, and Zou C L 2022 Phys. Rev. A 106 033104 |
[39] | Liu A P, Liu J W, Peng W, Xu X B, Chen G J, Ren X, Wang Q, and Zou C L 2022 Phys. Rev. A 105 053520 |
[40] | Meng Y, Lee J, Dagenais M, and Rolston S 2015 Appl. Phys. Lett. 107 091110 |
[41] | Chen L, Huang C J, Xu X B, Zhang Y C, Ma D Q, Lu Z T, Wang Z B, Chen G J, Zhang J Z, Tang H X, Dong C H, Liu W, Xiang G Y, Guo G C, and Zou C L 2022 Phys. Rev. Appl. 17 034031 |
[42] | Kuhr S, Alt W, Schrader D, Muller M, Gomer V, and Meschede D 2001 Science 293 278 |
[43] | Nußmann S, Hijlkema M, Weber B, Rohde F, Rempe G, and Kuhn A 2005 Phys. Rev. Lett. 95 173602 |
[44] | Dinardo B A and Anderson D Z 2016 Rev. Sci. Instrum. 87 123108 |
[45] | Yu G, Wang G, Ishikawa H, Umeno M, Soga T, Egawa T, Watanabe J, and Jimbo T 1997 Appl. Phys. Lett. 70 3209 |
[46] | Muth J, Brown J D, Johnson M, Yu Z, Kolbas R, Cook J, and Schetzina J 1999 MRS Int. J. Nitride Semicond. Res. 4 502 |
[47] | Liu J, Bo F, Chang L, Dong C H, Ou X, Regan B, Shen X, Song Q, Yao B, Zhang W, Zou C L, and Xiao Y F 2022 Sci. Chin. Phys. Mech. & Astron. 65 104201 |
[48] | Metcalf H J and van der Straten P 1999 Laser Cooling and Trapping (New York: Springer) |
[49] | Ketterle W, Durfee D S, and Stamper-Kurn D 1999 arXiv:cond-mat/9904034 |
[50] | Huet L, Ammar M, Morvan E, Sarazin N, Pocholle J P, Reichel J, Guerlin C, and Schwartz S 2012 Appl. Phys. Lett. 100 121114 |
[51] | Schrader D, Kuhr S, Alt W, Muller M, Gomer V, and Meschede D 2001 Appl. Phys. B 73 819 |
[52] | Hickman G T and Saffman M 2020 Phys. Rev. A 101 063411 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|