Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 086301    DOI: 10.1088/0256-307X/40/8/086301
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Unlocking the Potential of Two-Dimensional Janus Superlattices: Directly Visualizing Phonon Transitions
Yingzhou Liu, Jincheng Yue, Yinong Liu, Lei-Lei Nian*, and Shiqian Hu*
School of Physics and Astronomy, Yunnan University, Kunming 650091, China
Cite this article:   
Yingzhou Liu, Jincheng Yue, Yinong Liu et al  2023 Chin. Phys. Lett. 40 086301
Download: PDF(12818KB)   PDF(mobile)(13041KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recent research has focused on using Anderson's localization concept to modulate coherent phonon transport by introducing disorder into periodic structures. However, designing and identifying the disorder's strength remain challenging, and visual evidence characterizing phonon localization is lacking. Here, we investigate the effect of disorder on coherent phonon transport in a two-dimensional Janus MoSSe/WSSe superlattice with a defined disorder strength. Using non-equilibrium molecular dynamics, we demonstrate that strong disorder can lead to strong phonon localization, as evidenced by smaller thermal conductivity and significantly different dependence on defect ratio in strongly disordered structures. Furthermore, we propose a novel defect engineering method to determine whether phonon localization occurs. Our work provides a unique platform for modulating coherent phonon transport and presents visual evidence of the phonon transition from localization to nonlocalization. These findings will contribute to development of phonon transport and even phononics, which are essential for thermoelectric and phononic applications.
Received: 13 July 2023      Published: 07 August 2023
PACS:  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.50.-x65.80.-g  
  71.23.-k (Electronic structure of disordered solids)  
  71.55.Jv (Disordered structures; amorphous and glassy solids)  
  31.15.xv (Molecular dynamics and other numerical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/086301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/086301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yingzhou Liu
Jincheng Yue
Yinong Liu
Lei-Lei Nian
and Shiqian Hu
[1] Song H F, Liu J M, Liu B L, Wu J Q, Cheng H M, and Kang F Y 2018 Joule 2 442
[2] Gu X K, Wei Y J, Yin X B, Li B W, and Yang R G 2018 Rev. Mod. Phys. 90 041002
[3] Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X T, Esfarjani K, Lü J T, Shiomi J, and Yang N 2019 J. Mater. Chem. A 7 2114
[4] Lu X and Zhong W R 2015 Chin. Phys. Lett. 32 096501
[5] Shi W, Zhang X, Li X L, Qiao X F, Wu J B, Zhang J, and Tan P H 2016 Chin. Phys. Lett. 33 057801
[6] Xiao R C, Wang Z, Zhang Z Q, Liu J, and Jiang H 2021 Chin. Phys. Lett. 38 057301
[7] Zhang C, Ma D, Shang M, Wan X, Lü J T, Guo Z, Li B, and Yang N 2022 Mater. Today Phys. 22 100605
[8] Pan D K, Zong Z C, and Yang N 2022 Acta Phys. Sin. 71 086302 (in Chinese)
[9] Liu M Y, Gong L, He Y, and Cao C 2021 Phys. Rev. B 103 075421
[10] Liu M Y, Gong L, He Y, and Cao C 2021 Phys. Rev. B 104 035409
[11] Dong L, Lou J, and Shenoy V B 2017 ACS Nano 11 8242
[12] Guo Y, Zhou S, Bai Y, and Zhao J 2017 Appl. Phys. Lett. 110 163102
[13] Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236
[14] Miao T T, Xiang M X, Chen D S, An M G, and Ma W G 2022 Int. J. Heat Mass Transfer 183 122099
[15] Kumar N, Sachdeva P K, Gupta R, and Bera C 2022 ACS Appl. Energy Mater. 5 9581
[16] Saini S, Shrivastava A, Dixit A, and Singh S 2022 J. Mater. Sci. 57 7012
[17] Yu J K, Mitrovic S, Tham D, Varghese J, and Heath J R 2010 Nat. Nanotechnol. 5 718
[18] Zen N, Puurtinen T A, Isotalo T J, Chaudhuri S, and Maasilta I J 2014 Nat. Commun. 5 3435
[19] Alaie S, Goettler D F, Su M, Leseman Z C, Reinke C M, and El-Kady I 2015 Nat. Commun. 6 7228
[20] Dong L, Wu X, Hu Y, Xu X, and Bao H 2021 Chin. Phys. Lett. 38 027202
[21] Ma D, Arora A, Deng S, Xie G, Shiomi J, and Yang N 2019 Mater. Today Phys. 8 56
[22] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z, Fitzgerald E A, and Chen G 2012 Science 338 936
[23] Ravichandran J, Yadav A K, Cheaito R, Rossen P B, Soukiassian A, Suresha S J, Duda J C, Foley B M, Lee C H, Zhu Y, Lichtenberger A W, Moore J E, Muller D A, Schlom D G, Hopkins P E, Majumdar A, Ramesh R, and Zurbuchen M A 2014 Nat. Mater. 13 168
[24] Juntunen T, Vanska O, and Tittonen I 2019 Phys. Rev. Lett. 122 105901
[25] Hu S Q, Zhang Z Q, Jiang P F, Chen J, Volz S, Nomura M, and Li B W 2018 J. Phys. Chem. Lett. 9 3959
[26] Hu R, Iwamoto S, Feng L, Ju S H, Hu S Q, Ohnishi M, Nagai N, Hirakawa K, and Shiomi J 2020 Phys. Rev. X 10 021050
[27] Wei H, Bao H, and Ruan X 2020 Nano Energy 71 104619
[28] Anderson P W 1958 Phys. Rev. 109 1492
[29] Zhang C W, Zhou H, Zeng Y, Zheng L, Zhan Y L, and Bi K D 2019 Int. J. Heat Mass Transfer 132 681
[30] Wei H, Hu Y, Bao H, and Ruan X 2022 Carbon 197 18
[31] Liu Y N, Ren W N, An M, Dong L, Gao L, Shai X X, Wei T T, Nie L R, Hu S Q, and Zeng C H 2022 Front. Mater. 9 913764
[32] Ma J Q, Wang S, Wan X, Ma D K, Xiao Y, Hao Q, and Yang N 2022 Nanoscale 14 17072
[33] Roy C P, Reynolds C, Garrett A, Feng T, Adiga S P, and Ruan X 2020 Nano Energy 69 104428
[34] Hu S, Ju S, Shao C, Guo J, Xu B, Ohnishi M, and Shiomi J 2021 Mater. Today Phys. 16 100324
[35] Ni Y X, Zhang H G, Hu S, Wang H Y, Volz S, and Xiong S Y 2019 Int. J. Heat Mass Transfer 144 118608
[36] Yamamoto T, Sasaoka K, and Watanabe S 2011 Phys. Rev. Lett. 106 215503
[37] Li M Y, Zheng B, Duan K, Zhang Y, Huang Z G, and Zhou H M 2018 J. Phys. Chem. C 122 14945
[38] Zheng B W and Gu G X 2019 Carbon 155 697
[39] Ding Z W, Pei Q X, Jiang J W, Huang W X, and Zhang Y W 2016 Carbon 96 888
[40] Chen Y, Zhang Y, Cai K, Jiang J, Zheng J C, Zhao J, and Wei N 2017 Carbon 117 399
[41] Jiang J W 2019 Acta Mech. Solida Sin. 32 17
[42] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, and Chen J 2019 Nanoscale 11 11839
[43] Wu M, Shi R C, Qi R S, Li Y H, Feng T, Liu B Y, Yan J Y, Li X M, Liu Z T, Wang T, Wei T, Liu Z, Du J, Chen J, and Gao P 2023 Chin. Phys. Lett. 40 036801
[44] Wan J, Jiang J W, and Park H S 2020 Carbon 157 262
[45] Liu X G, Gao J F, Zhang G, and Zhang Y W 2017 Nano Res. 10 2944
[46] Ratsifaritana C A and Klemens P G 1987 Int. J. Thermophys. 8 737
[47] Hu S Q, Chen J, Yang N, and Li B W 2017 Carbon 116 139
[48] Nakamura Y, Isogawa M, Ueda T, Yamasaka S, Matsui H, Kikkawa J, Ikeuchi S, Oyake T, Hori T, Shiomi J, and Sakai A 2015 Nano Energy 12 845
[49] Acharya S, Yu B K, Hwang J, Kim J, and Kim W 2021 Adv. Funct. Mater. 31 2105008
[50] Fan Z Y, Wang Y Z, Ying P H, Song K K, Wang J J, Wang Y, Zeng Z Z, Xu K, Lindgren E, Rahm J M, Gabourie A J, Liu J, Dong H, Wu J, Chen Y, Zhong Z, Sun J, Erhart P, Su Y, and Ala-Nissila T 2022 J. Chem. Phys. 157 114801
[51] Yang N, Zhang G, and Li B W 2008 Appl. Phys. Lett. 93 243111
[52] Yang N, Zhang G, and Li B W 2009 Appl. Phys. Lett. 95 033107
[53] Wang H D, Hu S Q, Takahashi K, Zhang X, Takamatsu H, and Chen J 2017 Nat. Commun. 8 15843
[54] Hu S Q, An M, Yang N, and Li B W 2017 Small 13 1602726
[55] Ding X and Ming Y 2014 Chin. Phys. Lett. 31 046601
[56] Narayanamurti V, Störmer H L, Chin M A, Gossard A C, and Wiegmann W 1979 Phys. Rev. Lett. 43 2012
[57] Cheney D A and Lukes J R 2012 J. Heat Transfer 134 042403
[58] Ohmura T, Onodera M, and Naito M 2011 Jpn. J. Appl. Phys. 50 11re03
[59] Gutzler R, Garg M, Ast C R, Kuhnke K, and Kern K 2021 Nat. Rev. Phys. 3 441
Related articles from Frontiers Journals
[1] Mei Wu, Ruochen Shi, Ruishi Qi, Yuehui Li, Tao Feng, Bingyao Liu, Jingyuan Yan, Xiaomei Li, Zhetong Liu, Tao Wang, Tongbo Wei, Zhiqiang Liu, Jinlong Du, Ji Chen, and Peng Gao. Effects of Localized Interface Phonons on Heat Conductivity in Ingredient Heterogeneous Solids[J]. Chin. Phys. Lett., 2023, 40(3): 086301
[2] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 086301
[3] Shenshen Yan, Yi Wang, Zhibin Gao, Yang Long, and Jie Ren. Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe[J]. Chin. Phys. Lett., 2021, 38(2): 086301
[4] Chen Wang, Lu-Qin Wang, and Jie Ren. Managing Quantum Heat Transfer in a Nonequilibrium Qubit-Phonon Hybrid System with Coherent Phonon States[J]. Chin. Phys. Lett., 2021, 38(1): 086301
[5] Yue-Hui Li, Mei Wu, Rui-Shi Qi, Ning Li, Yuan-Wei Sun, Cheng-Long Shi, Xue-Tao Zhu, Jian-Dong Guo, Da-Peng Yu, Peng Gao. Probing Lattice Vibrations at SiO$_{2}$/Si Surface and Interface with Nanometer Resolution[J]. Chin. Phys. Lett., 2019, 36(2): 086301
[6] Ze-Qun Fang, Zhi-Lin Hou. Tunable Band Gap in Piezoelectric Composite Rod Based on the Inter-Coupling Effect[J]. Chin. Phys. Lett., 2018, 35(5): 086301
[7] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 086301
[8] MING Yi, DING Xing. Quantum Heat Transfer in a Harmonic Chain with a Dephasing Reservoir[J]. Chin. Phys. Lett., 2014, 31(08): 086301
[9] LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo. Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs[J]. Chin. Phys. Lett., 2012, 29(7): 086301
[10] TIAN Bao-Li, DU Zu-Liang, MA Yan-Mei, LI Xue-Fei, CUI Qi-Liang, CUI Tian, LIU Bing-Bing, ZOU Guang-Tian. Raman Investigation of Sodium Titanate Nanotubes under Hydrostatic Pressures up to 26.9GPa[J]. Chin. Phys. Lett., 2010, 27(2): 086301
[11] Jian-Hui Jiang, Shuang Lu, and Jie Chen. Phonon Focusing Effect in an Atomic Level Triangular Structure[J]. Chin. Phys. Lett., 2023, 40(9): 086301
Viewed
Full text


Abstract