Chin. Phys. Lett.  2023, Vol. 40 Issue (8): 086701    DOI: 10.1088/0256-307X/40/8/086701
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Realization of $^{87}$Rb Bose–Einstein Condensates in Higher Bands of a Hexagonal Boron-Nitride Optical Lattice
Jin-Yu Liu1,2, Xiao-Qiong Wang3*, and Zhi-Fang Xu2,3*
1Department of Physics, Harbin Institute of Technology, Harbin 150001, China
2Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
3Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article:   
Jin-Yu Liu, Xiao-Qiong Wang, and Zhi-Fang Xu 2023 Chin. Phys. Lett. 40 086701
Download: PDF(5762KB)   PDF(mobile)(5775KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ultracold neutral atoms in higher bands of an optical lattice provide a natural avenue to emulate orbital physics in solid state materials. Here, we report the realization of $^{87}$Rb Bose–Einstein condensates in the fourth and seventh Bloch bands of a hexagonal boron-nitride optical lattice, exhibiting remarkably long coherence time through active cooling. Using band mapping spectroscopy, we observe that atoms condensed at the energy minimum of $\varGamma$ point ($K_{1}$ and $K_{2}$ points) in the fourth (seventh) band as sharp Bragg peaks. The lifetime for the condensate in the fourth (seventh) band is about 57.6 (4.8) ms, and the phase coherence of atoms in the fourth band persists for a long time larger than 110 ms. Our work thus offers great promise for studying unconventional bosonic superfluidity of neutral atoms in higher bands of optical lattices.
Received: 18 April 2023      Editors' Suggestion Published: 21 July 2023
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  37.10.Jk (Atoms in optical lattices)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/8/086701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I8/086701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jin-Yu Liu
Xiao-Qiong Wang
and Zhi-Fang Xu
[1] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, and Sen U 2007 Adv. Phys. 56 243
[2] Bloch I 2005 Nat. Phys. 1 23
[3] Bloch I, Dalibard J, and Zwerger W 2008 Rev. Mod. Phys. 80 885
[4] Bloch I, Dalibard J, and Nascimbène S 2012 Nat. Phys. 8 267
[5] Windpassinger P and Sengstock K 2013 Rep. Prog. Phys. 76 086401
[6] Georgescu I M, Ashhab S, and Nori F 2014 Rev. Mod. Phys. 86 153
[7] Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann D S, Malomed B A, Sowiński T, and Zakrzewski J 2015 Rep. Prog. Phys. 78 066001
[8] Gross C and Bloch I 2017 Science 357 995
[9] Schäfer F, Fukuhara T, Sugawa S, Takasu Y, and Takahashi Y 2020 Nat. Rev. Phys. 2 411
[10] Imada M, Fujimori A, and Tokura Y 1998 Rev. Mod. Phys. 70 1039
[11] Tokura Y and Nagaosa N 2000 Science 288 462
[12] Khaliullin G 2005 Prog. Theor. Phys. Suppl. 160 155
[13] Liu W V and Wu C J 2006 Phys. Rev. A 74 013607
[14] Wu C J 2009 Mod. Phys. Lett. B 23 1
[15] Li X P and Liu W V 2016 Rep. Prog. Phys. 79 116401
[16] Kock T, Hippler C, Ewerbeck A, and Hemmerich A 2016 J. Phys. B 49 042001
[17] Wirth G, Ölschläger M, and Hemmerich A 2011 Nat. Phys. 7 147
[18] Ölschläger M, Kock T, Wirth G, Ewerbeck A, Smith C M, and Hemmerich A 2013 New J. Phys. 15 083041
[19] Kock T, Ölschläger M, Ewerbeck A, Huang W M, Mathey L, and Hemmerich A 2015 Phys. Rev. Lett. 114 115301
[20] Cai Z and Wu C 2011 Phys. Rev. A 84 033635
[21] Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, and Xu Z F 2021 Nature 596 227
[22] Wang X Q, Luo G Q, Liu J Y, Huang G H, Li Z X, Wu C, Hemmerich A, and Xu Z F 2022 arXiv:2211.05578 [cond-mat.quant-gas]
[23] Wu C J, Liu W V, Moore J, and Sarma S D 2006 Phys. Rev. Lett. 97 190406
[24] Ölschläger M, Wirth G, and Hemmerich A 2011 Phys. Rev. Lett. 106 015302
[25] Ölschläger M, Wirth G, Kock T, and Hemmerich A 2012 Phys. Rev. Lett. 108 075302
[26] Nuske M, Vargas J, Hachmann M, Eichberger R, Mathey L, and Hemmerich A 2020 Phys. Rev. Res. 2 043210
[27] Niu L X, Jin S J, Chen X Z, Li X P, and Zhou X J 2018 Phys. Rev. Lett. 121 265301
[28] Zhou X J, Jin S J, and Schmiedmayer J 2018 New J. Phys. 20 055005
[29] Jin S J, Zhang W J, Guo X X, Chen X Z, Zhou X J, and Li X P 2021 Phys. Rev. Lett. 126 035301
[30] Guo X X, Yu Z C, Peng P, Yin G L, Jin S J, Chen X Z, and Zhou X J 2021 Phys. Rev. A 104 033326
[31]Klafka T 2021 Ph.D. Dissertation (Universität Hamburg)
[32]Ilin A 2022 Ph.D. Dissertation (Universität Hamburg)
[33] Kosch M N, Asteria L, Zahn H P, Sengstock K, and Weitenberg C 2022 Phys. Rev. Res. 4 043083
[34] Liu J Y, Luo G Q, Wang X Q, Hemmerich A, and Xu Z F 2022 Opt. Express 30 44375
[35] Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, and Hemmerich A 2021 Phys. Rev. Lett. 127 033201
[36] Kiefer Y, Hachmann M, and Hemmerich A 2023 Nat. Phys. 19 794
[37] Paul S and Tiesinga E 2013 Phys. Rev. A 88 033615
[38] Martikainen J P 2011 Phys. Rev. A 83 013610
[39] Pinheiro F, Matrikainen J P, and Larson J 2015 New J. Phys. 17 053004
[40] Sharma V, Choudhury S, and Mueller E J 2020 Phys. Rev. A 101 033609
[41] Greiner M, Bloch I, Mandel O, Hänsch T W, and Esslinger T 2001 Phys. Rev. Lett. 87 160405
[42] Köhl M, Moritz H, Stöferle T, Günter K, and Esslinger T 2005 Phys. Rev. Lett. 94 080403
[43] Müller T, Fölling S, Widera A, and Bloch I 2007 Phys. Rev. Lett. 99 200405
Related articles from Frontiers Journals
[1] Canzhu Tan, Fachao Hu, Zhijing Niu, Yuhai Jiang, Matthias Weidemüller, and Bing Zhu. Measurements of Dipole Moments for the $5{s}5{p}\,^3\!{P}_1$–$5{s}n{s}\, ^3\!{S}_1$ Transitions via Autler–Townes Spectroscopy[J]. Chin. Phys. Lett., 2022, 39(9): 086701
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[3] Benquan Lu, Xiaotong Lu, Jiguang Li, and Hong Chang. Reconciliation of Theoretical Lifetimes of the $5s5p\,^3\!P^{\rm o}_2$ Metastable State for $^{88}$Sr with Measurement: The Role of the Blackbody-Radiation-Induced Decay[J]. Chin. Phys. Lett., 2022, 39(7): 086701
[4] Xiang-Chuan Yan, Da-Li Sun, Lu Wang, Jing Min, Shi-Guo Peng, and Kai-Jun Jiang. Production of Degenerate Fermi Gases of $^6$Li Atoms in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2021, 38(5): 086701
[5] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 086701
[6] Qijin Chen, Jibiao Wang, Lin Sun, Yi Yu. Unusual Destruction and Enhancement of Superfluidity of Atomic Fermi Gases by Population Imbalance in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2020, 37(5): 086701
[7] Xue-Jing Feng, Lan Yin. Phase Diagram of a Spin-Orbit Coupled Dipolar Fermi Gas at T=0K[J]. Chin. Phys. Lett., 2020, 37(2): 086701
[8] Wei Qi, Ming-Cheng Liang, Han Zhang, Yu-Dong Wei, Wen-Wei Wang, Xu-Jie Wang, Xibo Zhang. Experimental Realization of Degenerate Fermi Gases of $^{87}$Sr Atoms with 10 or Two Spin Components[J]. Chin. Phys. Lett., 2019, 36(9): 086701
[9] Xiao-Bin Ma, Zhu-Xiong Ye, Li-Yang Xie, Zhen Guo, Li You, Meng Khoon Tey. Measurement of S-Wave Scattering Length between $^6$Li and $^{88}$Sr Atoms Using Interspecies Thermalization in an Optical Dipole Trap[J]. Chin. Phys. Lett., 2019, 36(7): 086701
[10] Zhenlian Shi, Ziliang Li, Pengjun Wang, Zengming Meng, Lianghui Huang, Jing Zhang. Sub-Doppler Laser Cooling of $^{23}$Na in Gray Molasses on the $D_{2}$ Line[J]. Chin. Phys. Lett., 2018, 35(12): 086701
[11] Tian-You Gao, Dong-Fang Zhang, Ling-Ran Kong, Rui-Zong Li, Kai-Jun Jiang. Observation of Atomic Dynamic Behaviors in the Evaporative Cooling by In-Situ Imaging the Plugged Hole of Ultracold Atoms[J]. Chin. Phys. Lett., 2018, 35(8): 086701
[12] Ya-Hui Wang, Zhong-Qi Ma. Spin-1/2 Fermion Gas in One-Dimensional Harmonic Trap with Attractive Delta Function Interaction[J]. Chin. Phys. Lett., 2017, 34(2): 086701
[13] Bei-Bing Huang. A Realistic Model for Observing Spin-Balanced Fulde–Ferrell Superfluid in Honeycomb Lattices[J]. Chin. Phys. Lett., 2016, 33(08): 086701
[14] Dong-Fang Zhang, Tian-You Gao, Ling-Ran Kong, Kai Li, Kai-Jun Jiang. Production of Rubidium Bose–Einstein Condensate in an Optically Plugged Magnetic Quadrupole Trap[J]. Chin. Phys. Lett., 2016, 33(07): 086701
[15] Qiang Zhu, Bing Wang, De-Zhi Xiong, Bao-Long Lü. Signature of Critical Point in Momentum Profile of Trapped Ultracold Bose Gases[J]. Chin. Phys. Lett., 2016, 33(07): 086701
Viewed
Full text


Abstract