Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 077201    DOI: 10.1088/0256-307X/40/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe$_{3}$GeTe$_{2}$/Cr$_{2}$Ge$_{2}$Te$_{6}$/Fe$_{3}$GeTe$_{2}$ Junctions
Zi-Ao Wang1,2, Xiaomin Zhang1,2, Wenkai Zhu1, Faguang Yan1, Pengfei Liu1, Zhe Yuan3, and Kaiyou Wang1,2*
1State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
Cite this article:   
Zi-Ao Wang, Xiaomin Zhang, Wenkai Zhu et al  2023 Chin. Phys. Lett. 40 077201
Download: PDF(2478KB)   PDF(mobile)(2633KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The emergent van der Waals magnetic material is a promising component for spintronic devices with novel functionalities. Here, we report a transition of negative-to-positive magnetoresistance in Fe$_{3}$GeTe$_{2}$/Cr$_{2}$Ge$_{2}$Te$_{6}$/ Fe$_{3}$GeTe$_{2}$ van der Waals all-magnetic tunnel junctions with increasing the applied bias voltage. A negative magnetoresistance is observed first in Fe$_{3}$GeTe$_{2}$/Cr$_{2}$Ge$_{2}$Te$_{6}$/Fe$_{3}$GeTe$_{2}$ tunnel junctions, where the resistance with antiparallel aligned magnetization of two Fe$_{3}$GeTe$_{2}$ electrodes is lower than that with parallel alignment, which is due to the opposite spin polarizations of two Fe$_{3}$GeTe$_{2}$ electrodes. With the bias voltage increasing, the spin polarization of the biased Fe$_{3}$GeTe$_{2}$ electrode is changed so that the spin orientations of two Fe$_{3}$GeTe$_{2}$ electrodes are the same. Our experimental observations are supported by the calculated spin-dependent density of states for Fe$_{3}$GeTe$_{2}$ electrodes under a finite bias. The significantly bias voltage-dependent spin transport properties in van der Waals magnetic tunnel junctions open a promising route for designing electrical controllable spintronic devices based on van der Waals magnets.
Received: 13 April 2023      Published: 27 June 2023
PACS:  72.25.Mk (Spin transport through interfaces)  
  75.70.Cn (Magnetic properties of interfaces (multilayers, superlattices, heterostructures))  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/077201       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/077201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zi-Ao Wang
Xiaomin Zhang
Wenkai Zhu
Faguang Yan
Pengfei Liu
Zhe Yuan
and Kaiyou Wang
[1] Žutić I, Fabian J, and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Zhu J G J and Park C 2006 Mater. Today 9 36
[3] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P, and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[4] He B, Hu Y, Zhao C, Wei J, Zhang J, Zhang Y, Cheng C, Li J, Nie Z, Luo Y, Zhou Y, Zhang S, Zeng Z, Peng Y, Coey J M D, Han X, and Yu G 2023 Adv. Electron. Mater. 9 2201240
[5] Miao G X, Münzenberg M, and Moodera J S 2011 Rep. Prog. Phys. 74 036501
[6] Botsch L, Lorite I, Kumar Y, Esquinazi P D, Zajadacz J, and Zimmer K 2019 ACS Appl. Electron. Mater. 1 1832
[7] Novoselov K S, Mishchenko A, Carvalho A, and Neto A H C 2016 Science 353 aac9439
[8] Liu Y, Huang Y, and Duan X 2019 Nature 567 323
[9] Liang S J, Cheng B, Cui X, and Miao F 2019 Adv. Mater. 32 1903800
[10] Castellanos-Gomez A, Duan X, Fei Z, Gutierrez H R, Huang Y, Huang X, Quereda J, Qian Q, Sutter E, and Sutter P 2022 Nat. Rev. Methods Primers 2 58
[11] Zhang Y, Xu H, Feng J, Wu H, Yu G, and Han X 2021 Chin. Phys. B 30 118504
[12] Zhang L S, Zhou J, Li H, Shen L, and Feng Y P 2021 Phys. Rev. Appl. 8 021308
[13] Elahi E, Dastgeer G, Sharma P R, Nisar S, Suleman M, Iqbal M W, Imran M, Aslam M, and Imran A 2022 J. Phys. D 55 423001
[14] Hao Q H, Dai H W, Cai M H, Chen X D, Xing Y T, Chen H J, Zhai T Y, Wang X, and Han J B 2022 Adv. Electron. Mater. 8 2200164
[15] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94
[16] Zhang G J, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067
[17] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[18] Wang Y P and Long M Q 2020 Phys. Rev. B 101 024411
[19] Wimmer S, Sánchez-Barriga J, Küppers P et al. 2021 Adv. Mater. 33 2102935
[20] Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E, and Morpurgo A F 2019 Nat. Nanotechnol. 14 1116
[21] Otrokov M M, Klimovskikh I I, Bentmann H et al. 2019 Nature 576 416
[22] May A F, Calder S, Cantoni C, Cao H, and McGuire M A 2016 Phys. Rev. B 93 014411
[23] Niu W, Cao Z, Wang Y, Wu Z, Zhang X, Han W, Wei L, Wang L, Xu Y, Zou Y, He L, and Pu Y 2021 Phys. Rev. B 104 125429
[24] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072
[25] Hu C, Yan F, Li Y, and Wang K 2021 Chin. Phys. B 30 097505
[26] Zheng Y H, Ma X L, Yan F G, Lin H L, Zhu W K, Ji Y, Wang R S, and Wang K Y 2022 npj 2D Mater. Appl. 6 62
[27] Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303
[28] Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater. 21 1144
[29] Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, and Wang L 2019 Sci. Adv. 5 eaaw0409
[30] Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K, and Wang K Y 2020 ACS Appl. Mater. & Interfaces 12 43921
[31] Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y C, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658
[32] Wang Z A, Xue W, Yan F, Zhu W, Liu Y, Zhang X, Wei Z, Chang K, Yuan Z, and Wang K 2023 Nano Lett. 23 710
[33] Carteaux V, Brunet D, Ouvrard G, and Andre G 1995 J. Phys.: Condens. Matter 7 69
[34] Sharma M, Wang S X, and Nickel J H 1999 Phys. Rev. Lett. 82 616
[35] Daqiq R and Ghobadi N 2016 J. Supercond. Novel Magn. 29 1675
[36] Lin H, Yan F, Hu C, Zheng Y, Sheng Y, Zhu W, Wang Z, Zheng H, and Wang K 2022 Nanoscale 14 2352
[37] Tsymbal E Y, Mryasov O N, and LeClair P R 2003 J. Phys.: Condens. Matter 15 R109
Related articles from Frontiers Journals
[1] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 077201
[2] MA Yan-Ni, REN Jun-Feng, ZHANG Yu-Bin, LIU De-Sheng, XIE Shi-Jie. Effect of Electric Field on Spin Polarized Current in Ferromagnetic/Organic Semiconductor Systems[J]. Chin. Phys. Lett., 2007, 24(6): 077201
[3] GAO Wen-Zhu, SUN Lang, ZHENG Yi-Song. Electronic Transport through a Waveguide in the Presence of a Magnetic Obstacle[J]. Chin. Phys. Lett., 2007, 24(6): 077201
[4] WANG Tian-Xing, WEI Hong-Xiang, HAN Xiu-Feng, R. M. Langford, Martin Thornton, M. A. Bari, J. M. D. Coey. Spin Transport in Multi Wall Carbon Nanotubes with Co Electrodes[J]. Chin. Phys. Lett., 2006, 23(10): 077201
[5] ZHANG Guang-Biao, WANG Shun-Jin, LI Lei. Shot Noise in a Mesoscopic Interferometer[J]. Chin. Phys. Lett., 2006, 23(6): 077201
[6] YUAN Song-Liu, LIU Li, ZHONG Qiang-Hua, CAO Heng, XIAO Xun, CHEN Wei, MIAO JU-Hong, NIU Le-Yuan, ZHANG Guo-Hong, XIA Zheng-Cai, LIU Sheng. Electrical Transport and Magnetoresistance in the Sol-Gel Prepared La2/3Ca1/3Mn1-xTExO3 (x = 0 and 4%, TE=Cu and Zn) Polycrystalline Samples[J]. Chin. Phys. Lett., 2004, 21(7): 077201
Viewed
Full text


Abstract