CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures |
Yueying Li1,2†, Xiangbin Cai3†, Wenjie Sun1,2, Jiangfeng Yang1,2, Wei Guo1,2, Zhengbin Gu1,2, Ye Zhu3*, and Yuefeng Nie1,2* |
1National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China 2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China 3Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 999077, China
|
|
Cite this article: |
Yueying Li, Xiangbin Cai, Wenjie Sun et al 2023 Chin. Phys. Lett. 40 076801 |
|
|
Abstract The nickel-based superconductivity provides a fascinating new platform to explore high-$T_{\rm c}$ superconductivity. As the infinite-layer nickelates are obtained by removing the apical oxygens from the precursor perovskite phase, the crystalline quality of the perovskite phase is crucial in synthesizing high quality superconducting nickelates. Especially, cation-related defects, such as the Ruddlesden–Popper-type (RP-type) faults, are unlikely to disappear after the topotactic reduction process and should be avoided during the growth of the perovskite phase. Herein, using reactive molecular beam epitaxy, we report the atomic-scale engineering of the interface structure and demonstrate its impact in reducing crystalline defects in Nd-based nickelate/SrTiO$_{3}$ heterostructures. A simultaneous deposition of stoichiometric Nd and Ni directly on SrTiO$_{3}$ substrates results in prominent Nd vacancies and Ti diffusion at the interface and RP-type defects in nickelate films. In contrast, inserting an extra [NdO] monolayer before the simultaneous deposition of Nd and Ni forms a sharp interface and greatly eliminates RP-type defects in nickelate films. A possible explanation related to the polar discontinuity is also discussed. Our results provide an effective method to synthesize high-quality precursor perovskite phase for the investigation of the novel superconductivity in nickelates.
|
|
Received: 11 February 2023
Published: 20 June 2023
|
|
PACS: |
68.37.-d
|
(Microscopy of surfaces, interfaces, and thin films)
|
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
81.15.Hi
|
(Molecular, atomic, ion, and chemical beam epitaxy)
|
|
|
|
|
[1] | Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 |
[2] | Gu Q Q and Wen H H 2022 Innovation 3 100202 |
[3] | Mitchell J F 2021 Front. Phys. 9 813483 |
[4] | Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 |
[5] | Zeng S W, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, and Ariando A 2020 Phys. Rev. Lett. 125 147003 |
[6] | Pan G A, Ferenc S D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova C D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160 |
[7] | Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, and Zhou K J 2022 Nat. Mater. 21 1116 |
[8] | Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, and Lee W S 2021 Science 373 213 |
[9] | Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, and Wen H H 2020 Nat. Commun. 11 6027 |
[10] | Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, and Hwang H Y 2021 Nat. Phys. 17 473 |
[11] | Li D F 2021 Sci. Sin.-Phys. Mech. Astron. 51 047405 (in Chinese) |
[12] | Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843 |
[13] | Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102 |
[14] | Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, and Hwang H Y 2020 APL Mater. 8 041107 |
[15] | Li Y Y, Sun W J, Yang J F, Cai X B, Guo W, Gu Z B, Zhu Y, and Nie Y F 2021 Front. Phys. 9 719534 |
[16] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D F, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083 |
[17] | Yamanaka T, Hattori A N, Pamasi L N, Takemoto S, Hattori K, Daimon H, Sato K, and Tanaka H 2019 ACS Appl. Electron. Mater. 1 2678 |
[18] | Obradors X, Paulius L M, Maple M B, Torrance J B, Nazzal A I, Fontcuberta J, and Granados X 1993 Phys. Rev. B 47 12353 |
[19] | Breckenfeld E, Chen Z, Damodaran A R, and Martin L W 2014 ACS Appl. Mater. & Interfaces 6 22436 |
[20] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409 |
[21] | Li Q, He C P, Si J, Zhu X Y, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 |
[22] | Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, and Hepting M 2021 Sci. Adv. 7 eabl8091 |
[23] | Detemple E, Ramasse Q M, Sigle W, Cristiani G, Habermeier H U, Benckiser E, Boris A V, Frano A, Wochner P, Wu M, Keimer B, and van Aken P A 2011 Appl. Phys. Lett. 99 211903 |
[24] | Middey S, Rivero P, Meyers D, Kareev M, Liu X, Cao Y, Freeland J W, Barraza-Lopez S, and Chakhalian J 2014 Sci. Rep. 4 6819 |
[25] | Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Freeland J W, and Chakhalian J 2010 Appl. Phys. Lett. 96 133111 |
[26] | Tung I C, Luo G, Lee J H, Chang S H, Moyer J, Hong H, Bedzyk M J, Zhou H, Morgan D, Fong D D, and Freeland J W 2017 Phys. Rev. Mater. 1 053404 |
[27] | Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Liu J S, and Shen D W 2016 AIP Adv. 6 085115 |
[28] | Kim D W, Kim D H, Kang B S, Noh T W, Lee D R, and Lee K B 1999 Appl. Phys. Lett. 74 2176 |
[29] | Kim D W, Kim D H, Noh T W, Char K, Park J H, Lee K B, and Kim H D 2000 J. Appl. Phys. 88 7056 |
[30] | Yamada T, Kiguchi T, Wakiya N, Shinozaki K, and Mizutani N 2003 MRS Online Proc. Libr. 747 17 |
[31] | Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, and Koinuma H 1994 Science 266 1540 |
[32] | Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D, Hwang H Y, Pentcheva R, and Kourkoutis L F 2023 Nat. Mater. 22 466 |
[33] | Ikuhara Y H, Gao X P, Huang R, Fisher C A J, Kuwabara A, Moriwake H, and Kohama K 2014 J. Phys. Chem. C 118 19540 |
[34] | He R, Jiang P H, Lu Y, Song Y D, Chen M X, Jin M L, Shui L L, and Zhong Z C 2020 Phys. Rev. B 102 035118 |
[35] | Sun H Y, Mao Z W, Zhang T W, Han L, Zhang T T, Cai X B, Guo X, Li Y F, Zang Y P, Guo W, Song J H, Ji D X, Gu C Y, Tang C, Gu Z B, Wang N, Zhu Y, Schlom D G, Nie Y F, and Pan X Q 2018 Nat. Commun. 9 2965 |
[36] | Haeni J H, Theis C D, and Schlom D G 2000 J. Electroceram. 4 385 |
[37] | Mizoguchi T, Takahashi N, and Lee H S 2011 Appl. Phys. Lett. 98 091909 |
[38] | Gömann K, Borchardt G, Gunhold A, Maus-Friedrichs W, and Baumann H 2004 Phys. Chem. Chem. Phys. 6 3639 |
[39] | Catalan G, Bowman R M, and Gregg J M 2000 Phys. Rev. B 62 7892 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|