Chin. Phys. Lett.  2023, Vol. 40 Issue (7): 076801    DOI: 10.1088/0256-307X/40/7/076801
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Synthesis of Chemically Sharp Interface in NdNiO$_{3}$/SrTiO$_{3}$ Heterostructures
Yueying Li1,2†, Xiangbin Cai3†, Wenjie Sun1,2, Jiangfeng Yang1,2, Wei Guo1,2, Zhengbin Gu1,2, Ye Zhu3*, and Yuefeng Nie1,2*
1National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
2Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong 999077, China
Cite this article:   
Yueying Li, Xiangbin Cai, Wenjie Sun et al  2023 Chin. Phys. Lett. 40 076801
Download: PDF(3647KB)   PDF(mobile)(3661KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The nickel-based superconductivity provides a fascinating new platform to explore high-$T_{\rm c}$ superconductivity. As the infinite-layer nickelates are obtained by removing the apical oxygens from the precursor perovskite phase, the crystalline quality of the perovskite phase is crucial in synthesizing high quality superconducting nickelates. Especially, cation-related defects, such as the Ruddlesden–Popper-type (RP-type) faults, are unlikely to disappear after the topotactic reduction process and should be avoided during the growth of the perovskite phase. Herein, using reactive molecular beam epitaxy, we report the atomic-scale engineering of the interface structure and demonstrate its impact in reducing crystalline defects in Nd-based nickelate/SrTiO$_{3}$ heterostructures. A simultaneous deposition of stoichiometric Nd and Ni directly on SrTiO$_{3}$ substrates results in prominent Nd vacancies and Ti diffusion at the interface and RP-type defects in nickelate films. In contrast, inserting an extra [NdO] monolayer before the simultaneous deposition of Nd and Ni forms a sharp interface and greatly eliminates RP-type defects in nickelate films. A possible explanation related to the polar discontinuity is also discussed. Our results provide an effective method to synthesize high-quality precursor perovskite phase for the investigation of the novel superconductivity in nickelates.
Received: 11 February 2023      Published: 20 June 2023
PACS:  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  74.70.-b (Superconducting materials other than cuprates)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/7/076801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I7/076801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yueying Li
Xiangbin Cai
Wenjie Sun
Jiangfeng Yang
Wei Guo
Zhengbin Gu
Ye Zhu
and Yuefeng Nie
[1] Li D F, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624
[2] Gu Q Q and Wen H H 2022 Innovation 3 100202
[3] Mitchell J F 2021 Front. Phys. 9 813483
[4] Li D F, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001
[5] Zeng S W, Tang C S, Yin X, Li C, Li M, Huang Z, Hu J, Liu W, Omar G J, Jani H, Lim Z S, Han K, Wan D, Yang P, Pennycook S J, Wee A T S, and Ariando A 2020 Phys. Rev. Lett. 125 147003
[6] Pan G A, Ferenc S D, LaBollita H, Song Q, Nica E M, Goodge B H, Pierce A T, Doyle S, Novakov S, Córdova C D, N'Diaye A T, Shafer P, Paik H, Heron J T, Mason J A, Yacoby A, Kourkoutis L F, Erten O, Brooks C M, Botana A S, and Mundy J A 2022 Nat. Mater. 21 160
[7] Tam C C, Choi J, Ding X, Agrestini S, Nag A, Wu M, Huang B, Luo H, Gao P, García-Fernández M, Qiao L, and Zhou K J 2022 Nat. Mater. 21 1116
[8] Lu H, Rossi M, Nag A, Osada M, Li D F, Lee K, Wang B Y, Garcia-Fernandez M, Agrestini S, Shen Z X, Been E M, Moritz B, Devereaux T P, Zaanen J, Hwang H Y, Zhou K J, and Lee W S 2021 Science 373 213
[9] Gu Q Q, Li Y Y, Wan S Y, Li H Z, Guo W, Yang H, Li Q, Zhu X Y, Pan X Q, Nie Y F, and Wen H H 2020 Nat. Commun. 11 6027
[10] Wang B Y, Li D F, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R, and Hwang H Y 2021 Nat. Phys. 17 473
[11] Li D F 2021 Sci. Sin.-Phys. Mech. Astron. 51 047405 (in Chinese)
[12] Hayward M A, Green M A, Rosseinsky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843
[13] Kawai M, Inoue S, Mizumaki M, Kawamura N, Ichikawa N, and Shimakawa Y 2009 Appl. Phys. Lett. 94 082102
[14] Lee K, Goodge B H, Li D F, Osada M, Wang B Y, Cui Y, Kourkoutis L F, and Hwang H Y 2020 APL Mater. 8 041107
[15] Li Y Y, Sun W J, Yang J F, Cai X B, Guo W, Gu Z B, Zhu Y, and Nie Y F 2021 Front. Phys. 9 719534
[16] Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D F, Kourkoutis L F, and Hwang H Y 2021 Adv. Mater. 33 2104083
[17] Yamanaka T, Hattori A N, Pamasi L N, Takemoto S, Hattori K, Daimon H, Sato K, and Tanaka H 2019 ACS Appl. Electron. Mater. 1 2678
[18] Obradors X, Paulius L M, Maple M B, Torrance J B, Nazzal A I, Fontcuberta J, and Granados X 1993 Phys. Rev. B 47 12353
[19] Breckenfeld E, Chen Z, Damodaran A R, and Martin L W 2014 ACS Appl. Mater. & Interfaces 6 22436
[20] Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409
[21] Li Q, He C P, Si J, Zhu X Y, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16
[22] Puphal P, Wu Y M, Fürsich K, Lee H, Pakdaman M, Bruin J A N, Nuss J, Suyolcu Y E, van Aken P A, Keimer B, Isobe M, and Hepting M 2021 Sci. Adv. 7 eabl8091
[23] Detemple E, Ramasse Q M, Sigle W, Cristiani G, Habermeier H U, Benckiser E, Boris A V, Frano A, Wochner P, Wu M, Keimer B, and van Aken P A 2011 Appl. Phys. Lett. 99 211903
[24] Middey S, Rivero P, Meyers D, Kareev M, Liu X, Cao Y, Freeland J W, Barraza-Lopez S, and Chakhalian J 2014 Sci. Rep. 4 6819
[25] Liu J, Kareev M, Prosandeev S, Gray B, Ryan P, Freeland J W, and Chakhalian J 2010 Appl. Phys. Lett. 96 133111
[26] Tung I C, Luo G, Lee J H, Chang S H, Moyer J, Hong H, Bedzyk M J, Zhou H, Morgan D, Fong D D, and Freeland J W 2017 Phys. Rev. Mater. 1 053404
[27]Yang H F, Liu Z T, Fan C C, Yao Q, Xiang P, Zhang K L, Li M Y, Liu J S, and Shen D W 2016 AIP Adv. 6 085115
[28] Kim D W, Kim D H, Kang B S, Noh T W, Lee D R, and Lee K B 1999 Appl. Phys. Lett. 74 2176
[29] Kim D W, Kim D H, Noh T W, Char K, Park J H, Lee K B, and Kim H D 2000 J. Appl. Phys. 88 7056
[30] Yamada T, Kiguchi T, Wakiya N, Shinozaki K, and Mizutani N 2003 MRS Online Proc. Libr. 747 17
[31] Kawasaki M, Takahashi K, Maeda T, Tsuchiya R, Shinohara M, Ishiyama O, Yonezawa T, Yoshimoto M, and Koinuma H 1994 Science 266 1540
[32] Goodge B H, Geisler B, Lee K, Osada M, Wang B Y, Li D, Hwang H Y, Pentcheva R, and Kourkoutis L F 2023 Nat. Mater. 22 466
[33] Ikuhara Y H, Gao X P, Huang R, Fisher C A J, Kuwabara A, Moriwake H, and Kohama K 2014 J. Phys. Chem. C 118 19540
[34] He R, Jiang P H, Lu Y, Song Y D, Chen M X, Jin M L, Shui L L, and Zhong Z C 2020 Phys. Rev. B 102 035118
[35] Sun H Y, Mao Z W, Zhang T W, Han L, Zhang T T, Cai X B, Guo X, Li Y F, Zang Y P, Guo W, Song J H, Ji D X, Gu C Y, Tang C, Gu Z B, Wang N, Zhu Y, Schlom D G, Nie Y F, and Pan X Q 2018 Nat. Commun. 9 2965
[36] Haeni J H, Theis C D, and Schlom D G 2000 J. Electroceram. 4 385
[37] Mizoguchi T, Takahashi N, and Lee H S 2011 Appl. Phys. Lett. 98 091909
[38] Gömann K, Borchardt G, Gunhold A, Maus-Friedrichs W, and Baumann H 2004 Phys. Chem. Chem. Phys. 6 3639
[39] Catalan G, Bowman R M, and Gregg J M 2000 Phys. Rev. B 62 7892
Related articles from Frontiers Journals
[1] Lili Han, Chunhua Du, Ziguang Ma, Yang Jiang, Kanglin Xiong, Wenxin Wang, Hong Chen, Zhen Deng, and Haiqiang Jia. Effect of Pt Interlayer on Low Resistivity Ohmic Contact to p-InP Layer and Its Optimization[J]. Chin. Phys. Lett., 2021, 38(6): 076801
[2] Shuo Yang, Zhenpeng Hu, Weihai Wang, Peng Cheng, Lan Chen, and Kehui Wu. Regular Arrangement of Two-Dimensional Clusters of Blue Phosphorene on Ag(111)[J]. Chin. Phys. Lett., 2020, 37(9): 076801
[3] Yusong Tu, Liang Zhao, Jiajia Sun, Yuanyan Wu, Xiaojie Zhou, Liang Chen, Xiaoling Lei, Haiping Fang, Guosheng Shi. Water-Mediated Spontaneously Dynamic Oxygen Migration on Graphene Oxide with Structural Adaptivity for Biomolecule Adsorption[J]. Chin. Phys. Lett., 2020, 37(6): 076801
[4] Yang-Yang Xu, Yu Wang, Ai-Yun Liu, Wang-Zhou Shi, Gu-Jin Hu, Shi-Min Li, Hui-Yong Deng, Ning Dai. Effect of Zr Content on Formation and Optical Properties of the Layered PbZr$_{x}$Ti$_{1-x}$O$_{3}$ Films[J]. Chin. Phys. Lett., 2020, 37(2): 076801
[5] Li Dong, Aiwei Wang, En Li, Qin Wang, Geng Li, Qing Huan, Hong-Jun Gao. Formation of Two-Dimensional AgTe Monolayer Atomic Crystal on Ag(111) Substrate[J]. Chin. Phys. Lett., 2019, 36(2): 076801
[6] Chong Wang, Hao Zhong, Eddy Simoen, Xiang-Dong Jiang, Ya-Dong Jiang, Wei Li. Structural Variation and Its Influence on the $1/f$ Noise of a-Si$_{1-x}$Ru$_{x}$ Thin Films Embedded with Nanocrystals[J]. Chin. Phys. Lett., 2019, 36(2): 076801
[7] Ai-Min Li, Lu-Dong, Xin-Yi Yang, Zhen Zhu, Guan-Yong Wang, Dan-Dan Guan, Hao Zheng, Yao-Yi Li, Canhua Liu, Dong Qian, Jin-Feng Jia. Metastable Face-Centered Cubic Structure and Structural Transition of Sn on 2H-NbSe$_{2}$ (0001)[J]. Chin. Phys. Lett., 2018, 35(6): 076801
[8] Wei-Jun Wan, Wei Ren, Xiao-Ran Meng, Yun-Xia Ping, Xing Wei, Zhong-Ying Xue, Wen-Jie Yu, Miao Zhang, Zeng-Feng Di, Bo Zhang. Improvement of Nickel-Stanogermanide Contact Properties by Platinum Interlayer[J]. Chin. Phys. Lett., 2018, 35(5): 076801
[9] Somayeh Asgary, Amir Hoshang Ramezani. Dependence of Nitrogen/Argon Reaction Gas Amount on Structural, Mechanical and Optical Properties of Thin WN$_{x}$ Films[J]. Chin. Phys. Lett., 2017, 34(12): 076801
[10] Peng Sun, Wei-Wei Yu, Xiao-Hang Pan, Wei Wei, Yan Sun, Ning-Yi Yuan, Jian-Ning Ding, Wen-Chao Zhao, Xin Chen, Ning Dai. Fluorescence Enhancement of Metal-Capped Perovskite CH$_{3}$NH$_{3}$PbI$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2017, 34(9): 076801
[11] V. Dalouji, S. M. Elahi, A. Ghaderi, S. Solaymani. Porosity Evaluation and the Power Spectral Densities Analyses of Carbon–Nickel Composite Films Annealed at Different Temperatures[J]. Chin. Phys. Lett., 2016, 33(08): 076801
[12] Ling Wang, Wang Liu, Yue Li, Yun-Long Shi, Yuan-Xia Lao, Xiao-Bo Lu, Ai-Hong Deng, Yuan Wang. Diffusion Behavior of Cumulative He Doped in Cu/W Multilayer Nanofilms at Room Temperature[J]. Chin. Phys. Lett., 2016, 33(06): 076801
[13] SUN Qing-Ling, WANG Lu, WANG Wen-Qi, SUN Ling, LI Mei-Cheng, WANG Wen-Xin, JIA Hai-Qiang, ZHOU Jun-Ming, CHEN Hong. Growth and Characterization of InAs1?xSbx with Different Sb Compositions on GaAs Substrates[J]. Chin. Phys. Lett., 2015, 32(10): 076801
[14] ZHANG Xiao-Nan, MEI Xian-Xiu, MA Xue, WANG Ying-Min, QIANG Jian-Bing, WANG You-Nian. Ar12+ Induced Irradiation Damage in Bulk Metallic Glass (Cu47Zr45Al8)98.5Y1.5[J]. Chin. Phys. Lett., 2015, 32(02): 076801
[15] WANG Xian-Ying, XIE Shu-Fan, CHEN Xiao-Dong, LIU Yang-Yang. Direct Piezoelectric Potential Measurement of ZnO Nanowires Using a Kelvin Probe Force Microscope[J]. Chin. Phys. Lett., 2013, 30(4): 076801
Viewed
Full text


Abstract