Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 060302    DOI: 10.1088/0256-307X/40/6/060302
GENERAL |
Engineering Knill–Laflamme–Milburn Entanglement via Dissipation and Coherent Population Trapping in Rydberg Atoms
Rui Li1, Shuang He2, Zhi-Jun Meng1, Zhao Jin3, and Wei-Jiang Gong1*
1College of Sciences, Northeastern University, Shenyang 110819, China
2Aviation University of Air Force, Changchun 130022, China
3NCO School, Army Academy of Artillery and Air Defense, Shenyang 110867, China
Cite this article:   
Rui Li, Shuang He, Zhi-Jun Meng et al  2023 Chin. Phys. Lett. 40 060302
Download: PDF(2891KB)   PDF(mobile)(2919KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a scheme for dissipatively preparing bipartite Knill–Laflamme–Milburn (KLM) entangled state in a neutral atom system, where the spontaneous emission of excited Rydberg states, combined with the coherent population trapping, is actively exploited to engineer a steady KLM state from an arbitrary initial state. Instead of commonly used antiblockade dynamics of two Rydberg atoms, we particularly utilize the Rydberg–Rydberg interaction as the pumping source to drive the undesired states so that it is unnecessary to satisfy a certain relation with laser detuning. The numerical simulation of the master equation signifies that both the fidelity and the purity above 98$\%$ is available with the current feasible parameters, and the corresponding steady-state fidelity is robust to the variations of the dynamical parameters.
Received: 10 March 2023      Published: 29 May 2023
PACS:  03.67.Bg (Entanglement production and manipulation)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Dv (Quantum state engineering and measurements)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/060302       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Rui Li
Shuang He
Zhi-Jun Meng
Zhao Jin
and Wei-Jiang Gong
[1] Ketterle W 2002 Rev. Mod. Phys. 74 1131
[2] Nadlinger D P, Drmota P, Nichol B C, Araneda G, Main D, Srinivas R, Lucas D M, Ballance C J, Ivanov K, Tan E Y, Sekatski P, Urbanke R L, Renner R, Sangouard N, and Bancal J D 2022 Nature 607 682
[3] Ekert A K 1991 Phys. Rev. Lett. 67 661
[4] Ashhab S, Maruyama K, Brukner Č, and Nori F 2009 Phys. Rev. A 80 062106
[5] Heaney L, Lee S W, and Jaksch D 2010 Phys. Rev. A 82 042116
[6] Xue P, Xiao L, Ruffolo G, Mazzari A, Temistocles T, Terra C M, and Rabelo R 2023 Phys. Rev. Lett. 130 040201
[7] Bouwmeester D, Pan J W, Mattle K, Eibl M, and Zeilinger A 1997 Nature 390 575
[8] Braunstein S L and Kimble H J 1998 Phys. Rev. Lett. 80 869
[9] Schuch N, Verstraete F, and Ignacio C J 2004 Phys. Rev. A 70 042310
[10] Heaney L and Vedral V 2009 Phys. Rev. Lett. 103 200502
[11] Mattle K, Weinfurter H, and Kwiat P G 1996 Phys. Rev. Lett. 76 4656
[12] Li X Y, Pan Q, Jing J T, Zhang J, Xie C D, and Peng K C 2002 Phys. Rev. Lett. 88 047904
[13] Kimble H J 2008 Nature 453 1023
[14] Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46
[15] Zheng R H, Xiao Y, Su S L, Chen Y H, Shi Z C, Song J, Xia Y, and Zheng S B 2021 Phys. Rev. A 103 052402
[16] Shao X Q, Wu J H, Yi X X, and Long G L 2017 Phys. Rev. A 96 062315
[17] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[18] Franson J D, Donegan M M, and Jacobs B C 2004 Phys. Rev. A 69 052328
[19] Cheng L Y, Wang H F, Yeon K H, and Zhang S 2012 J. Opt. Soc. Am. B 29 1584
[20] Ji Y Q, Li H, Liu Y L, Zhang D W, Zhou X J, Xiao R J, Dong L, and Xiu X M 2020 Laser Phys. Lett. 17 085202
[21] Li D X, Shao X Q, Wu J H, Yi X X 2017 Opt. Express 25 33359
[22] Sheng Y B, Deng F G, and Zhou H Y 2008 Phys. Rev. A 77 042308
[23] Millo O, Katz D, and Cao Y W 2001 Phys. Rev. Lett. 86 5751
[24] Shi J 2019 J. Phys. B 52 01LT01
[25] Wang Y, Hu C S, Shi Z C, Huang B H, Song J, and Xia Y 2019 Ann. Phys. 531 1900006
[26] Liu Q G, Wu Q C, and Ji X 2014 J. Opt. Soc. Am. B 31 672
[27] Zheng R H, Kang Y H, Ran D, Shi Z C, and Xia Y 2020 Phys. Rev. A 101 012345
[28] Haase T, Alber G, and Stojanović V M 2021 Phys. Rev. A 103 032427
[29]Nielsen M A and Chuang I L 2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[30] Aolita L, de Melo F, and Davidovich L 2015 Rep. Prog. Phys. 78 042001
[31] Poyatos J F, Cirac J I, and Zoller Z 1996 Phys. Rev. Lett. 77 4728
[32] Plenio M B and Huelga S F 2002 Phys. Rev. Lett. 88 197901
[33] Zou J, Zhang S, and Tserkovnyak Y 2022 Phys. Rev. B 106 L180406
[34] Cole D C, Wu J J, Erickson S D, Hou P Y, Wilson A C, Leibfried D R F 2021 New J. Phys. 23 073001
[35] Shao X Q, Zheng T Y, Oh C H, and Zhang S 2014 Phys. Rev. A 89 012319
[36] Su S L, Shao X Q, Wang H F, and Zhang S 2014 Sci. Rep. 4 7566
[37] Reiter F, Reeb D, and Sørensen A S 2016 Phys. Rev. Lett. 117 040501
[38] Song J, Xia Y, Sun X D, and Song H S 2012 Phys. Rev. A 86 034303
[39] De Moraes N S D, Teizen V F, Montenegro V, and Vernek E 2017 Phys. Rev. A 96 062313
[40] Shao X Q, Wang Z H, Liu H D, and Yi X X 2016 Phys. Rev. A 94 032307
[41] Sweke R, Sinayskiy I, and Petruccione F 2013 Phys. Rev. A 87 042323
[42] Shen L T, Chen X Y, Yang Z B, Wu H Z, and Zheng S B 2011 Phys. Rev. A 84 064302
[43] Berkley J A 2003 Science 300 1548
[44] DiCarlo L 2010 Nature 467 574
[45] Politi A, Matthews J C F, and O'Brien J L 2009 Science 325 1221
[46] Akopian N, Lindner N H, Poem E, Berlatzky Y, Avron J, Gershoni D, Gerardot B D, and Petroff P M 2006 Phys. Rev. Lett. 96 130501
[47] Yin J, Cao Y, Li Y H et al. 2017 Science 356 1140
[48] Balasubramanian G, Neumann P, and Twitchen D 2009 Nat. Mater. 8 383
[49] Xue P and Xiao Y F 2006 Phys. Rev. Lett. 97 140501
[50] Brion E, Pedersen L H, and Molmer K 2007 Phys. Rev. A 75 032328
[51] Blatt R and Wineland D 2008 Nature 453 1008
[52] Saffman M, Walker T G, and Mlmer K 2010 Rev. Mod. Phys. 82 2313
[53] Saffman M and Walker T G 2005 Phys. Rev. A 72 042302
[54] Shi X F 2020 Phys. Rev. Appl. 13 024008
[55] Weimer H, Müller M, Lesanovsky I, Zoller P, B, and Hans P 2010 Nat. Phys. 6 382
[56] Ren J G 2017 Nature 549 70
[57] Montanaro A and Pallister S 2016 Phys. Rev. A 93 032324
[58] Mølmer K, Isenhower I, and Saffman M 2011 J. Phys. B 44 184016
[59] Li R, Yu D M, Su S L, and Qian J Q 2020 Phys. Rev. A 101 042328
[60] Su S L and Li W B 2021 Phys. Rev. A 104 033716
[61] Chen Y H, Shi Z C, Song J, Xia Y, and Zheng S B 2018 Phys. Rev. A 97 032328
[62] Walker T G and Saffman M 2008 Phys. Rev. A 77 032723
[63] Li D X and Shao X Q 2019 Phys. Rev. A 99 032348
Related articles from Frontiers Journals
[1] Sheng-Li Zhang, Chen-Hui Jin, Jian-Hong Shi , Jian-Sheng Guo, Xu-Bo Zou, Guang-Can Guo. Continuous Variable Quantum Teleportation in Beam-Wandering Modeled Atmosphere Channel[J]. Chin. Phys. Lett., 2017, 34(4): 060302
[2] Sheng-Li Zhang, Jian-Sheng Guo, Jian-Hong Shi, Xu-Bo Zou. Distillation of Atmospherically Disturbed Continuous Variable Quantum Entanglement with Photon Subtraction[J]. Chin. Phys. Lett., 2016, 33(07): 060302
[3] ZHANG Sheng-Li, WANG-Kun, GUO Jian-Sheng, SHI Jian-Hong. Quantum Illumination with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2015, 32(09): 060302
[4] GAN Shu, HE Xing-Dao, LIU Bin, FENG Cui-Di. Effect of Quantum Coins on Two-Particle Quantum Walks[J]. Chin. Phys. Lett., 2015, 32(08): 060302
[5] LI Xin, LI Zhong-Fang, SHI Zhi-Long, WANG Xiao-Qin. Characteristics of Entanglement Wave in Two Parallel Spin Chains[J]. Chin. Phys. Lett., 2014, 31(06): 060302
[6] SHANG Ru-Nan, LI Hai-Ou, CAO Gang, YU Guo-Dong, XIAO Ming, TU Tao, GUO Guo-Ping. Probing Energy Spectrum of Quadruple Quantum Dots with Microwave Field[J]. Chin. Phys. Lett., 2014, 31(05): 060302
[7] ZHAO Jie, LI Wen-Dong, GU Yong-Jian. Deterministic Three-Copy Entanglement Concentration of Photons through Direct Sum Extension and Auxiliary Degrees of Freedom[J]. Chin. Phys. Lett., 2013, 30(7): 060302
[8] ZHAO Jun-Jun, GUO Xiao-Min, WANG Xu-Yang, WANG Ning, LI Yong-Min, PENG Kun-Chi . Continuous Variable Entanglement Distribution for Long-Distance Quantum Communication[J]. Chin. Phys. Lett., 2013, 30(6): 060302
[9] ZHANG Dan, ZHENG Qiang. Effect of Phase Noise on the Stationary Entanglement of an Optomechanical System with Kerr Medium[J]. Chin. Phys. Lett., 2013, 30(2): 060302
[10] REN Jie, WU Yin-Zhong, ZHU Shi-Qun. Quantum Discord and Entanglement in Heisenberg XXZ Spin Chain after Quenches[J]. Chin. Phys. Lett., 2012, 29(6): 060302
[11] SHAN Chuan-Jia,**,CAO Shuai,XUE Zheng-Yuan,ZHU Shi-Liang. Anomalous Temperature Effects of the Entanglement of Two Coupled Qubits in Independent Environments[J]. Chin. Phys. Lett., 2012, 29(4): 060302
[12] YU You-Bin**, WANG Huai-Jun, FENG Jin-Xia . Generation of Enhanced Three-Mode Continuously Variable Entanglement[J]. Chin. Phys. Lett., 2011, 28(9): 060302
[13] Salman Khan**, M. Khalid Khan . Quantum Stackelberg Duopoly in a Noninertial Frame[J]. Chin. Phys. Lett., 2011, 28(7): 060302
[14] LIAO Qing-Hong, FANG Guang-Yu, WANG Ji-Cheng, AHMAD Muhammad Ashfaq, LIU Shu-Tian** . Control of the Entanglement between Two Josephson Charge Qubits[J]. Chin. Phys. Lett., 2011, 28(6): 060302
[15] ZHANG Miao, JIA Huan-Yu, WEI Lian-Fu, ** . Entangling a Series of Trapped Ions by Moving Cavity Bus[J]. Chin. Phys. Lett., 2011, 28(6): 060302
Viewed
Full text


Abstract