Chin. Phys. Lett.  2023, Vol. 40 Issue (6): 060301    DOI: 10.1088/0256-307X/40/6/060301
GENERAL |
Digital Simulation of Projective Non-Abelian Anyons with 68 Superconducting Qubits
Shibo Xu1†, Zheng-Zhi Sun2†, Ke Wang1†, Liang Xiang1, Zehang Bao1, Zitian Zhu1, Fanhao Shen1, Zixuan Song1, Pengfei Zhang1, Wenhui Ren1, Xu Zhang1, Hang Dong1, Jinfeng Deng1, Jiachen Chen1, Yaozu Wu1, Ziqi Tan1, Yu Gao1, Feitong Jin1, Xuhao Zhu1, Chuanyu Zhang1, Ning Wang1, Yiren Zou1, Jiarun Zhong1, Aosai Zhang1, Weikang Li2, Wenjie Jiang2, Li-Wei Yu3, Yunyan Yao1, Zhen Wang1,4, Hekang Li1, Qiujiang Guo1,4, Chao Song1,4*, H. Wang1,4*, and Dong-Ling Deng2,4,5*
1School of Physics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Interdisciplinary Center for Quantum Information, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China
2Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
3Theoretical Physics Division, Chern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, China
4Hefei National Laboratory, Hefei 230088, China
5Shanghai Qi Zhi Institute, Shanghai 200232, China
Cite this article:   
Shibo Xu, Zheng-Zhi Sun, Ke Wang et al  2023 Chin. Phys. Lett. 40 060301
Download: PDF(14075KB)   PDF(mobile)(16527KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Non-Abelian anyons are exotic quasiparticle excitations hosted by certain topological phases of matter. They break the fermion-boson dichotomy and obey non-Abelian braiding statistics: their interchanges yield unitary operations, rather than merely a phase factor, in a space spanned by topologically degenerate wavefunctions. They are the building blocks of topological quantum computing. However, experimental observation of non-Abelian anyons and their characterizing braiding statistics is notoriously challenging and has remained elusive hitherto, in spite of various theoretical proposals. Here, we report an experimental quantum digital simulation of projective non-Abelian anyons and their braiding statistics with up to 68 programmable superconducting qubits arranged on a two-dimensional lattice. By implementing the ground states of the toric-code model with twists through quantum circuits, we demonstrate that twists exchange electric and magnetic charges and behave as a particular type of non-Abelian anyons, i.e., the Ising anyons. In particular, we show experimentally that these twists follow the fusion rules and non-Abelian braiding statistics of the Ising type, and can be explored to encode topological logical qubits. Furthermore, we demonstrate how to implement both single- and two-qubit logic gates through applying a sequence of elementary Pauli gates on the underlying physical qubits. Our results demonstrate a versatile quantum digital approach for simulating non-Abelian anyons, offering a new lens into the study of such peculiar quasiparticles.
Received: 06 May 2023      Express Letter Published: 09 May 2023
PACS:  03.67.-a (Quantum information)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/6/060301       OR      https://cpl.iphy.ac.cn/Y2023/V40/I6/060301
[1]Griffiths D J and Schroeter D F 2018 Introduction to Quantum Mechanics (Cambridge: Cambridge University Press)
[2] MOTT N F 1968 Rev. Mod. Phys. 40 677
[3]Tinkham M 2004 Introduction to Superconductivity (Courier Corporation)
[4] Dalfovo F, Giorgini S, Pitaevskii L P, and Stringari S 1999 Rev. Mod. Phys. 71 463
[5] Wilczek F 1982 Phys. Rev. Lett. 49 957
[6] Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083
[7]Wilczek F 1990 Fractional Statistics and Anyon Superconductivity (Singerpore: World Scientific) vol 5
[8] Stern A 2010 Nature 464 187
[9] Moore G and Read N 1991 Nucl. Phys. B 360 362
[10] Wen X G 1991 Phys. Rev. Lett. 66 802
[11] Kitaev A Y 2003 Ann. Phys. 303 2
[12] Freedman M H, Larsen M, and Wang Z 2002 Commun. Math. Phys. 227 605
[13] Sarma S D, Freedman M, and Nayak C 2006 Phys. Today 59 32
[14] Stern A and Lindner N H 2013 Science 339 1179
[15] Kitaev A 2006 Ann. Phys. 321 2
[16] Barkeshli M, Jian C M, and Qi X L 2013 Phys. Rev. B 87 045130
[17] Teo J C Y, Roy A, and Chen X 2014 Phys. Rev. B 90 115118
[18] Bombin H 2010 Phys. Rev. Lett. 105 030403
[19] Zheng H X, Dua A, and Jiang L 2015 Phys. Rev. B 92 245139
[20] Brown B J, Laubscher K, Kesselring M S, and Wootton J R 2017 Phys. Rev. X 7 021029
[21] Alicea J, Oreg Y, Refael G, von Oppen F, and Fisher M P 2011 Nat. Phys. 7 412
[22] Ivanov D A 2001 Phys. Rev. Lett. 86 268
[23] Bonderson P, Kitaev A, and Shtengel K 2006 Phys. Rev. Lett. 96 016803
[24] Clarke D J, Alicea J, and Shtengel K 2013 Nat. Commun. 4 1348
[25] Tantivasadakarn N, Verresen R, and Vishwanath A 2022 arXiv:2209.03964 [quant-ph]
[26] Liu Y J, Shtengel K, Smith A, and Pollmann F 2022 PRX Quantum 3 040315
[27] Kalinowski M, Maskara N, and Lukin M D 2022 arXiv:2211.00017 [quant-ph]
[28] Deng D L, Wang S T, Sun K, and Duan L M 2015 Phys. Rev. B 91 094513
[29] Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y, and Stern A 2018 Nature 559 205
[30] Kasahara Y, Ohnishi T, Mizukami Y et al. 2018 Nature 559 227
[31] Dolev M, Heiblum M, Umansky V, Stern A, and Mahalu D 2008 Nature 452 829
[32] Bartolomei H, Kumar M, Bisognin R et al. 2020 Science 368 173
[33] Satzinger K J, Liu Y J, Smith A et al. 2021 Science 374 1237
[34] Dumitrescu P T, Bohnet J G, Gaebler J P, Hankin A, Hayes D, Kumar A, Neyenhuis B, Vasseur R, and Potter A C 2022 Nature 607 463
[35] Kyprianidis A, Machado F, Morong W et al. 2021 Science 372 1192
[36] Mi X, Ippoliti M, Quintana C et al. 2022 Nature 601 531
[37] Zhang X, Jiang W, Deng J et al. 2022 Nature 607 468
[38] Acharya R, Aleiner I, Allen R et al. 2022 arXiv:2207.06431 [quant-ph]
[39] Zhao Y W, Ye Y S, Huang H L et al. 2022 Phys. Rev. Lett. 129 030501
[40] Krinner S, Lacroix N, Remm A et al. 2022 Nature 605 669
[41] Marques J F, Varbanov B M, Moreira M S et al. 2022 Nat. Phys. 18 80
[42] Andersen T I, Lensky Y D, Kechedzhi K et al. 2022 arXiv:2210.10255 [quant-ph]
[43] Wen X G 2003 Phys. Rev. Lett. 90 016803
[44] Kitaev A and Kong L 2012 Commun. Math. Phys. 313 351
[45] Litinski D and von Oppen F 2017 Phys. Rev. B 96 205413
[46] Dennis E, Kitaev A, Landahl A, and Preskill J 2002 J. Math. Phys. 43 4452
[47] Raussendorf R, Harrington J, and Goyal K 2007 New J. Phys. 9 199
[48] Bombin H and Martin-Delgado M A 2009 J. Phys. A 42 095302
[49] You Y Z and Wen X G 2012 Phys. Rev. B 86 161107
[50] Kesselring M S, de Fuente J C M L, Thomsen F, Eisert J, Bartlett S D, and Brown B J 2022 arXiv:2212.00042 [quant-ph]
Related articles from Frontiers Journals
[1] Manchao Zhang, Jie Zhang, Wenbo Su, Xueying Yang, Chunwang Wu, Yi Xie, Wei Wu, and Pingxing Chen. Extension of Linear Response Regime in Weak-Value Amplification Technique[J]. Chin. Phys. Lett., 2023, 40(4): 060301
[2] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060301
[3] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 060301
[4] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 060301
[5] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 060301
[6] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 060301
[7] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 060301
[8] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 060301
[9] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 060301
[10] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 060301
[11] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 060301
[12] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 060301
[13] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 060301
[14] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 060301
[15] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060301
Viewed
Full text


Abstract