Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 057801    DOI: 10.1088/0256-307X/40/5/057801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Evolutionary Plasmonic Properties of Single Truncated Ag Nanowire-on-Au Film Nanocavity
Xin Zhu1,2,3, Jingyun Zhang1,2,3*, Cuihong Yang1,2,3, Ying Li1,2,3, and Yunyun Chen1,2,3
1School of Physics & Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing 210044, China
3Jiangsu International Joint Laboratory on Meterological Photonics and Optoelectronic Detection, Nanjing University of Information Science and Technology, Nanjing 210044, China
Cite this article:   
Xin Zhu, Jingyun Zhang, Cuihong Yang et al  2023 Chin. Phys. Lett. 40 057801
Download: PDF(4666KB)   PDF(mobile)(4906KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Noble metal nanocavities have been widely demonstrated to possess great potential applications in nano-optics and nanophotonics due to their extraordinary localized surface plasmon resonance. However, most metal nanocrystals synthesized by chemical methods often suffer from truncation with different degrees due to oxidation and dissolution of metal atoms at corner and edges. We investigate the influence of shape truncation on the plasmonic properties of single Ag nanowire on Au film nanocavity using the finite difference time domain method. When the Ag nanowire (the circumradius $R_{2}=50$ nm) is gradually truncated from pentagonal to circular geometry, the scattering peak position of the nanocavity shows prominent blue shift from 962 nm to 608 nm, suggesting a nonnegligible role of truncation on plasmonic properties. The electric field strength and charge distribution of the structure reveal the evolution from dipole mode to quadrupole mode. It is also found that the plasmon resonance wavelength is linearly dependent on the truncation ratio $R_{1}/R_{2}$ ($R_{1}$ is the inradius) and the modulation slope is also reliable to the size of Ag nanowire. Our observations could shed light on developing high-performance tunable optical nano-devices in future.
Received: 14 February 2023      Published: 01 May 2023
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  52.25.Tx (Emission, absorption, and scattering of particles)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/057801       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/057801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xin Zhu
Jingyun Zhang
Cuihong Yang
Ying Li
and Yunyun Chen
1.2 nm||
[1] Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828
[2] Wang X, Huang S C, Hu S, Yan S, and Ren B 2020 Nat. Rev. Phys. 2 253
[3] Li G C, Zhang Q, Maier S A, and Lei D 2018 Nanophotonics 7 1865
[4] Han X X, Rodriguez R S, Haynes C L, Ozaki Y, and Zhao B 2022 Nat. Rev. Methods Primers 1 87
[5] Sharma B, Frontiera R R, Henry A I, Ringe E, and VanDuyne R P 2012 Mater. Today 15 16
[6] Willets K A, Wilson A J, Sundaresan V, and Joshi P B 2017 Chem. Rev. 117 7538
[7] Lee H, Kang K, Mochizuki K, Lee C, Toh K A, Lee S A, Fujita K, and Kim D 2020 Nano Lett. 20 8951
[8] Azzam S I, Kildishev A V, Ma R M, Ning C Z, Oulton R, S V, Stockman M I, Xu J L, and Zhang X 2020 Light: Sci. & Appl. 9 90
[9] Deeb C and Pelouard J L 2017 Phys. Chem. Chem. Phys. 19 29731
[10] Hill R T, Mock J J, Hucknall A, Wolter S D, Jokerst N M, Smith D R, and Chilkoti A 2012 ACS Nano 6 9237
[11] Ciracì C, Hill R T, Mock J J, Urzhumov Y, Fernandez-Dominguez A I, Maier S A, Pendry J B, Chilkoti A, and Smith D R 2012 Science 337 1072
[12] Chen H, Jiang Z H, and Hu H T 2022 Nat. Photon. 16 651
[13] Peng J L, Jeong H H, Lin Q Q, Cormier S, Liang H L, De V M, V, and Baumberg J J 2019 Sci. Adv. 5 2205
[14] Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957
[15] Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J W, Wei W D 2018 Chem. Rev. 118 2927
[16] Cho C H, Aspetti C O, Turk M E, Kikkawa J M, Nam S W, and Agarwal R 2011 Nat. Mater. 10 669
[17] Russell K J, Liu T L, Cui S Y, and Hu E L 2012 Nat. Photon. 6 459
[18] Zhang H Q, Abhiraman B, Zhang Q, Miao J S, Jo K Y, Roccasecca S, Knight M W, Davoyan A R, and J 2020 Nat. Commun. 11 3552
[19] Xie S F, Choi S I, Xia X H, and Xia Y N 2013 Curr. Opin. Chem. Eng. 2 142
[20] Sun Y G, Mayers B, Herricks T, and Xia Y N 2003 Nano Lett. 3 955
[21] Hamans R F, Parente M, Garcia E A, and Baldi A 2022 J. Phys. Chem. C 126 8703
[22] Zhang A q, Qian D J, and Chen M 2013 Eur. Phys. J. D 67 231
[23] Zou Y F and Yu L 2021 Chin. Phys. Lett. 38 023301
[24] Xue J C, Lin L M, Zhou Z K, and Wang X H 2020 Chin. Phys. Lett. 37 114201
[25] Zhang J, Xu Y G, Zhang J X, Guan L L, and Li Y F 2020 Chin. Phys. Lett. 37 037101
[26] Yao F Q, Li F, He Z C, Liu Y H, Xu L T, and Han X B 2020 Appl. Sci. 10 2603
[27] Fang C H, Lee Y H, Shao L, Jiang R, Wang J F, and Xu Q H 2013 ACS Nano 7 9354
[28] Hu H L, Akimov Y A, Duan H G, Li X L, Liao M Y, Tan R L S, Wu L, Chen H Y, Fan H J, Bai P, Lee P S, Yang J K W, and Shen Z X 2013 Nanoscale 5 12086
[29]Edward D P 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) p 407
[30] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[31] Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, Carnegie C, Bowman R W, and Baumberg J J 2016 J. Phys. Chem. Lett. 7 2264
[32] Ma Y W, Wu Z W, Zhang L H, Liu W F, and Zhang J 2015 Chin. Phys. Lett. 32 094202
[33] Zhao P Q, Hu D S, Wu X L 2005 Chin. Phys. Lett. 22 1492
Related articles from Frontiers Journals
[1] Zengle Cao, Fengrui Hu, Zaiqin Man, Chunfeng Zhang, Weihua Zhang, Xiaoyong Wang, and Min Xiao. Trion-Facilitated Dexter-Type Energy Transfer in a Cluster of Single Perovskite CsPbBr$_{3}$ Nanocrystals[J]. Chin. Phys. Lett., 2020, 37(12): 057801
[2] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 057801
[3] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 057801
[4] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 057801
[5] Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao, Jun He. Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity[J]. Chin. Phys. Lett., 2017, 34(7): 057801
[6] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 057801
[7] PENG Xiao-Niu, WANG Ya-Lan, WANG Hao. The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates[J]. Chin. Phys. Lett., 2015, 32(11): 057801
[8] LI Yong, LING Hong, GAO Lei, SONG Yue-Li, TIAN Ming-Li, ZHOU Feng-Qun. Synthesis, Structure and Optical Properties of CdO Nanocrystals Directly Grown on Cd Foil[J]. Chin. Phys. Lett., 2015, 32(10): 057801
[9] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 057801
[10] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 057801
[11] WANG Xiao-Bo, LI Yong, YAN Ling-Ling, LI Xin-Jian. Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(5): 057801
[12] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 057801
[13] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(01): 057801
[14] LI Yong, WANG Xiao-Bo, ZHAO Jin-Chao, LI Xin-Jian. Paths for the Non-radiative Recombination Occurring in CdS:CdO/Si Multi-Interface Nanoheterostructure Array[J]. Chin. Phys. Lett., 2014, 31(07): 057801
[15] Halimah Mohamed. K, Mahmoud Goodarz Naseri, Amir Reza Sadrolhosseini, Arash Dehzangi, Ahmad Kamalianfar, Elias B Saion, Reza Zamiri, Hossein Abastabar Ahangar, Burhanuddin Y. Majlis. Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions[J]. Chin. Phys. Lett., 2014, 31(07): 057801
Viewed
Full text


Abstract