Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 058501    DOI: 10.1088/0256-307X/40/5/058501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr
Guibin Lan1,2†, Hongjun Xu1,3†, Yu Zhang1,2, Chen Cheng1, Bin He1,2, Jiahui Li1,2, Congli He4*, Caihua Wan1,2,3, Jiafeng Feng1,2, Hongxiang Wei1,2, Jia Zhang5, Xiufeng Han1,2,3, and Guoqiang Yu1,2,3*
1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3Songshan Lake Materials Laboratory, Dongguan 523808, China
4Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
5School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article:   
Guibin Lan, Hongjun Xu, Yu Zhang et al  2023 Chin. Phys. Lett. 40 058501
Download: PDF(5703KB)   PDF(mobile)(5707KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional van der Waals magnetic materials have demonstrated great potential for new-generation high-performance and versatile spintronic devices. Among them, magnetic tunnel junctions (MTJs) based on A-type antiferromagnets, such as CrI$_{3}$, possess record-high tunneling magnetoresistance (TMR) because of the spin filter effect of each insulating unit ferromagnetic layer. However, the relatively low working temperature and the instability of the chromium halides hinder applications of this system. Using a different technical scheme, we fabricated the MTJs based on an air-stable A-type antiferromagnet, CrSBr, and observed a giant TMR of up to 47000% at 5 K. Meanwhile, because of a relatively high Néel temperature of CrSBr, a sizable TMR of about 50% was observed at 130 K, which makes a big step towards spintronic devices at room temperature. Our results reveal the potential of realizing magnetic information storage in CrSBr-based spin-filter MTJs.
Received: 12 March 2023      Express Letter Published: 07 April 2023
PACS:  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
  85.75.Dd (Magnetic memory using magnetic tunnel junctions)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/058501       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/058501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guibin Lan
Hongjun Xu
Yu Zhang
Chen Cheng
Bin He
Jiahui Li
Congli He
Caihua Wan
Jiafeng Feng
Hongxiang Wei
Jia Zhang
Xiufeng Han
and Guoqiang Yu
[1] Han X F, Wang X, Wan C H, Yu G Q, and Lv X R 2021 Appl. Phys. Lett. 118 120502
[2] Jiang B Y, Zhang K, Machita T, Chen W, and Dovek M 2023 J. Magn. Magn. Mater. 571 170546
[3] Jang Y, Nam C, Kim J Y, Cho B K, Cho Y J, and Kim T W 2006 Appl. Phys. Lett. 89 163119
[4] Yu G Q, Diao Z, Feng J F, Kurt H, Han X F, and Coey J M D 2011 Appl. Phys. Lett. 98 112504
[5] Krizakova V, Perumkunnil M, Couet S, Gambardella P, and Garello K 2022 J. Magn. Magn. Mater. 562 169692
[6] Zeng Z M, Finocchio G, Zhang B S, Amiri P K, Katine J A, Krivorotov I N, Huai Y, Langer J, Azzerboni B, Wang K L, and Jiang H W 2013 Sci. Rep. 3 1426
[7] He B, Hu Y, Zhao C, Wei J, Zhang J, Zhang Y, Cheng C, Li J, Nie Z, Luo Y, Zhou Y, Zhang S, Zeng Z, Peng Y, Coey J M D, Han X, and Yu G 2023 Adv. Electron. Mater. 2023 2201240
[8] Jung S, Lee H, Myung S, Kim H, Yoon S K, Kwon S W, Ju Y, Kim M, Yi W, Han S, Kwon B, Seo B, Lee K, Koh G H, Lee K, Song Y, Choi C, Ham D, and Kim S J 2022 Nature 601 211
[9] Miyazaki T and Tezuka N 1995 J. Magn. Magn. Mater. 139 L231
[10] Moodera J S, Kinder L R, Wong T M, and Meservey R 1995 Phys. Rev. Lett. 74 3273
[11] Wei H X, Qin Q H, Ma M, Sharif R, and Han X F 2007 J. Appl. Phys. 101 09B501
[12] Butler W H, Zhang X G, Schulthess T C, and MacLaren J M 2001 Phys. Rev. B 63 054416
[13] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M, and Yang S H 2004 Nat. Mater. 3 862
[14] Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868
[15] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, and Ohno H 2008 Appl. Phys. Lett. 93 082508
[16] Scheike T, Wen Z, Sukegawa H, and Mitani S 2023 Appl. Phys. Lett. 122 112404
[17] Liu Y T and Shao Q M 2020 ACS Nano 14 9389
[18] Jiang X, Liu Q, Xing J, Liu N, Guo Y, Liu Z, and Zhao J 2021 Appl. Phys. Rev. 8 031305
[19] Zhang Y, Xu H, Feng J, Wu H, Yu G, and Han X 2021 Chin. Phys. B 30 118504
[20] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[21] Huang B V, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[22] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94
[23] Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun. 12 2492
[24] Zhu W K, Lin H L, Yan F G, Hu C, Wang Z, Zhao L X, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658
[25] Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater. 21 1144
[26] Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W F, and Chang H X 2022 Nat. Commun. 13 5067
[27] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J, Wang Y, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501
[28] Worledge D C and Geballe T H 2000 J. Appl. Phys. 88 5277
[29] Miao G X, Müller M, and Moodera J S 2009 Phys. Rev. Lett. 102 076601
[30] Song T C, Cai X H, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, and Xu X 2018 Science 360 1214
[31] Wang Z, Gutiérrez-Lezama I, Ubrig N, Kroner M, Gibertini M, Taniguchi T, Watanabe K, Imamoğlu A, Giannini E, and Morpurgo A F 2018 Nat. Commun. 9 2516
[32] Kim H H, Yang B, Tian S, Li C, Miao G X, Lei H, and Tsen A W 2019 Nano Lett. 19 5739
[33] Kim H H, Yang B, Patel T, Sfigakis F, Li C, Tian S, Lei H, and Tsen A W 2018 Nano Lett. 18 4885
[34] Liu H, Liu Y Y, Wen H, Wu H, Zong Y, Xia J, and Wei Z 2022 Magnetochemistry 8(8) 89
[35] Jiang Z, Wang P, Xing J, Jiang X, and Zhao J 2018 ACS Appl. Mater. & Interfaces 10 39032
[36] Ye C, Wang C, Wu Q, Liu S, Zhou J, Wang G, Söll A, Sofer Z, Yue M, Liu X, Tian M, Xiong Q, Ji W, and Renshaw W X 2022 ACS Nano 16 11876
[37] Boix-Constant C, Mañas-Valero S, Ruiz A M, Rybakov A, Konieczny K A, Pillet S, Baldoví J J, and Coronado E 2022 Adv. Mater. 34 2204940
[38] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, and Gao H J 2020 Nat. Commun. 11 2453
[39] Zhang Y, Xu H, Yi C, Wang X, Huang Y, Tang J, Jiang J, He C, Zhao M, Ma T, Dong J, Guo C, Feng J, Wan C, Wei H, Du H, Shi Y, Yu G, Zhang G, and Han X 2021 Appl. Phys. Lett. 118 262406
[40] Peng Y X, Ding S L, Cheng M, Hu Q F, Yang J, Wang F G, Xue M, Liu Z, Lin Z, Avdeev M, Hou Y, Yang W, Zheng Y, and Yang J 2020 Adv. Mater. 32 2001200
[41] Lee K, Dismukes A H, Telford E J, Wiscons R A, Wang J, Xu X, Nuckolls C, Dean C R, Roy X, and Zhu X 2021 Nano Lett. 21 3511
[42] Yang K, Wang G, Liu L, Lu D, and Wu H 2021 Phys. Rev. B 104 144416
[43] Beebe J M, Kim B, Gadzuk J W, Daniel F C, and Kushmerick J G 2006 Phys. Rev. Lett. 97 026801
[44] Müller M, Miao G X, and Moodera J S 2009 Europhys. Lett. 88 47006
[45] Feng H L, Shi G, Yan D Y, Li Y, Shi Y G, Xu Y G, Xiong P, and Li Y Q 2022 Appl. Phys. Lett. 121 142402
[46] Hu C, Yan F, Li Y, and Wang K 2021 Chin. Phys. B 30 097505
[47] Wang C, Zhou X, Zhou L, Tong N H, Lu Z Y, and Ji W 2019 Sci. Bull. 64 293
[48] Wang X, Tang J, Xia X, He C, Zhang J, Liu Y, Wan C, Fang C, Guo C, Yang W, Guang Y, Zhang X, Xu H, Wei J, Liao M, Lu X, Feng J, Li X, Peng Y, Wei H, Yang R, Shi D, Zhang X, Han Z, Zhang Z, Zhang G, Yu G, and Han X 2019 Sci. Adv. 5 eaaw8904
[49] Shin I, Cho W J, An E S, Park S, Jeong H W, Jang S, Baek W J, Park S Y, Yang D H, Seo J H, Kim G Y, Ali M N, Choi S Y, Lee H W, Kim J S, Kim S D, and Lee G H 2022 Adv. Mater. 34 2101730
[50] Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, and Singh S 2022 Nat. Mater. 21 1029
[51] Ye X G, Zhu P F, Xu W Z, Shang N, Liu K, and Liao Z M 2022 Chin. Phys. Lett. 39 037303
Related articles from Frontiers Journals
[1] Lifen Wang. Cubic Ice Captured by In Situ Transmission Electron Microscope[J]. Chin. Phys. Lett., 2023, 40(5): 058501
[2] Wen Jin, Gaojie Zhang, Hao Wu, Li Yang, Wenfeng Zhang, and Haixin Chang. Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics[J]. Chin. Phys. Lett., 2023, 40(5): 058501
[3] Zhaonian Jin, Minhang Song, Henan Fang, Lin Chen, Jiangwei Chen, and Zhikuo Tao. Characteristics and Applications of Current-Driven Magnetic Skyrmion Strings[J]. Chin. Phys. Lett., 2022, 39(10): 058501
[4] Lin Huang, Yongjian Zhou, Tingwen Guo, Feng Pan, and Cheng Song. Tunable Spin Hall Magnetoresistance in All-Antiferromagnetic Heterostructures[J]. Chin. Phys. Lett., 2022, 39(4): 058501
[5] Xiufeng Han, Yu Zhang, Yizhan Wang, Li Huang, Qinli Ma, Houfang Liu, Caihua Wan, Jiafeng Feng, Lin Yin, Guoqiang Yu, Tian Yu, and Yu Yan. High-Sensitivity Tunnel Magnetoresistance Sensors Based on Double Indirect and Direct Exchange Coupling Effect[J]. Chin. Phys. Lett., 2021, 38(12): 058501
[6] Qian Ye, Yu-Hao Shen, and Chun-Gang Duan. Ferroelectric Controlled Spin Texture in Two-Dimensional NbOI$_{2}$ Monolayer[J]. Chin. Phys. Lett., 2021, 38(8): 058501
[7] Yu Suo, Hao Yang, and Jiyong Fu. Distinct Three-Level Spin–Orbit Control Associated with Electrically Controlled Band Swapping[J]. Chin. Phys. Lett., 2020, 37(11): 058501
[8] Yingjie Zhang, Pengfei Liu, Hongyi Sun, Shixuan Zhao, Hu Xu, and Qihang Liu. Symmetry-Assisted Protection and Compensation of Hidden Spin Polarization in Centrosymmetric Systems[J]. Chin. Phys. Lett., 2020, 37(8): 058501
[9] Ya-Bo Chen, Xiao-Kuo Yang, Tao Yan, Bo Wei, Huan-Qing Cui, Cheng Li, Jia-Hao Liu, Ming-Xu Song, and Li Cai. Voltage-Driven Adaptive Spintronic Neuron for Energy-Efficient Neuromorphic Computing[J]. Chin. Phys. Lett., 2020, 37(7): 058501
[10] Si-Wei Mao, Jun Lu, Long Yang, Xue-Zhong Ruan, Hai-Long Wang, Da-Hai Wei, Yong-Bing Xu, Jian-Hua Zhao. Ultrafast Magnetization Precession in Perpendicularly Magnetized $L1_{0}$-MnAl Thin Films with Co$_{2}$MnSi Buffer Layers[J]. Chin. Phys. Lett., 2020, 37(5): 058501
[11] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 058501
[12] Xin Shang, Hai-Wen Liu, Ke Xia. Charge Transport Properties of the Majorana Zero Mode Induced Noncollinear Spin Selective Andreev Reflection[J]. Chin. Phys. Lett., 2019, 36(10): 058501
[13] Zheng-Wei Xie, Ling Li. Spin-Polarization in Quasi-Magnetic Tunnel Junctions[J]. Chin. Phys. Lett., 2017, 34(5): 058501
[14] Yuan-Yuan Guo, Fei-Fei Zhao, Hai-Bin Xue, Zhe-Jie Liu. Zero-Magnetic-Field Oscillation of Spin Transfer Nano-Oscillator with a Second-Order-Perpendicular-Anisotropy Free Layer[J]. Chin. Phys. Lett., 2016, 33(03): 058501
[15] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 058501
Viewed
Full text


Abstract