CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Evolutionary Plasmonic Properties of Single Truncated Ag Nanowire-on-Au Film Nanocavity |
Xin Zhu1,2,3, Jingyun Zhang1,2,3*, Cuihong Yang1,2,3, Ying Li1,2,3, and Yunyun Chen1,2,3 |
1School of Physics & Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China 2Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean, Nanjing University of Information Science and Technology, Nanjing 210044, China 3Jiangsu International Joint Laboratory on Meterological Photonics and Optoelectronic Detection, Nanjing University of Information Science and Technology, Nanjing 210044, China
|
|
Cite this article: |
Xin Zhu, Jingyun Zhang, Cuihong Yang et al 2023 Chin. Phys. Lett. 40 057801 |
|
|
Abstract Noble metal nanocavities have been widely demonstrated to possess great potential applications in nano-optics and nanophotonics due to their extraordinary localized surface plasmon resonance. However, most metal nanocrystals synthesized by chemical methods often suffer from truncation with different degrees due to oxidation and dissolution of metal atoms at corner and edges. We investigate the influence of shape truncation on the plasmonic properties of single Ag nanowire on Au film nanocavity using the finite difference time domain method. When the Ag nanowire (the circumradius $R_{2}=50$ nm) is gradually truncated from pentagonal to circular geometry, the scattering peak position of the nanocavity shows prominent blue shift from 962 nm to 608 nm, suggesting a nonnegligible role of truncation on plasmonic properties. The electric field strength and charge distribution of the structure reveal the evolution from dipole mode to quadrupole mode. It is also found that the plasmon resonance wavelength is linearly dependent on the truncation ratio $R_{1}/R_{2}$ ($R_{1}$ is the inradius) and the modulation slope is also reliable to the size of Ag nanowire. Our observations could shed light on developing high-performance tunable optical nano-devices in future.
|
|
Received: 14 February 2023
Published: 01 May 2023
|
|
PACS: |
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
52.25.Tx
|
(Emission, absorption, and scattering of particles)
|
|
|
|
|
[1] | Mayer K M and Hafner J H 2011 Chem. Rev. 111 3828 |
[2] | Wang X, Huang S C, Hu S, Yan S, and Ren B 2020 Nat. Rev. Phys. 2 253 |
[3] | Li G C, Zhang Q, Maier S A, and Lei D 2018 Nanophotonics 7 1865 |
[4] | Han X X, Rodriguez R S, Haynes C L, Ozaki Y, and Zhao B 2022 Nat. Rev. Methods Primers 1 87 |
[5] | Sharma B, Frontiera R R, Henry A I, Ringe E, and VanDuyne R P 2012 Mater. Today 15 16 |
[6] | Willets K A, Wilson A J, Sundaresan V, and Joshi P B 2017 Chem. Rev. 117 7538 |
[7] | Lee H, Kang K, Mochizuki K, Lee C, Toh K A, Lee S A, Fujita K, and Kim D 2020 Nano Lett. 20 8951 |
[8] | Azzam S I, Kildishev A V, Ma R M, Ning C Z, Oulton R, S V, Stockman M I, Xu J L, and Zhang X 2020 Light: Sci. & Appl. 9 90 |
[9] | Deeb C and Pelouard J L 2017 Phys. Chem. Chem. Phys. 19 29731 |
[10] | Hill R T, Mock J J, Hucknall A, Wolter S D, Jokerst N M, Smith D R, and Chilkoti A 2012 ACS Nano 6 9237 |
[11] | Ciracì C, Hill R T, Mock J J, Urzhumov Y, Fernandez-Dominguez A I, Maier S A, Pendry J B, Chilkoti A, and Smith D R 2012 Science 337 1072 |
[12] | Chen H, Jiang Z H, and Hu H T 2022 Nat. Photon. 16 651 |
[13] | Peng J L, Jeong H H, Lin Q Q, Cormier S, Liang H L, De V M, V, and Baumberg J J 2019 Sci. Adv. 5 2205 |
[14] | Comin A and Manna L 2014 Chem. Soc. Rev. 43 3957 |
[15] | Zhang Y C, He S, Guo W X, Hu Y, Huang J W, Mulcahy J W, Wei W D 2018 Chem. Rev. 118 2927 |
[16] | Cho C H, Aspetti C O, Turk M E, Kikkawa J M, Nam S W, and Agarwal R 2011 Nat. Mater. 10 669 |
[17] | Russell K J, Liu T L, Cui S Y, and Hu E L 2012 Nat. Photon. 6 459 |
[18] | Zhang H Q, Abhiraman B, Zhang Q, Miao J S, Jo K Y, Roccasecca S, Knight M W, Davoyan A R, and J 2020 Nat. Commun. 11 3552 |
[19] | Xie S F, Choi S I, Xia X H, and Xia Y N 2013 Curr. Opin. Chem. Eng. 2 142 |
[20] | Sun Y G, Mayers B, Herricks T, and Xia Y N 2003 Nano Lett. 3 955 |
[21] | Hamans R F, Parente M, Garcia E A, and Baldi A 2022 J. Phys. Chem. C 126 8703 |
[22] | Zhang A q, Qian D J, and Chen M 2013 Eur. Phys. J. D 67 231 |
[23] | Zou Y F and Yu L 2021 Chin. Phys. Lett. 38 023301 |
[24] | Xue J C, Lin L M, Zhou Z K, and Wang X H 2020 Chin. Phys. Lett. 37 114201 |
[25] | Zhang J, Xu Y G, Zhang J X, Guan L L, and Li Y F 2020 Chin. Phys. Lett. 37 037101 |
[26] | Yao F Q, Li F, He Z C, Liu Y H, Xu L T, and Han X B 2020 Appl. Sci. 10 2603 |
[27] | Fang C H, Lee Y H, Shao L, Jiang R, Wang J F, and Xu Q H 2013 ACS Nano 7 9354 |
[28] | Hu H L, Akimov Y A, Duan H G, Li X L, Liao M Y, Tan R L S, Wu L, Chen H Y, Fan H J, Bai P, Lee P S, Yang J K W, and Shen Z X 2013 Nanoscale 5 12086 |
[29] | Edward D P 1985 Handbook of Optical Constants of Solids (Orlando: Academic Press) p 407 |
[30] | Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370 |
[31] | Benz F, Chikkaraddy R, Salmon A, Ohadi H, de Nijs B, Mertens J, Carnegie C, Bowman R W, and Baumberg J J 2016 J. Phys. Chem. Lett. 7 2264 |
[32] | Ma Y W, Wu Z W, Zhang L H, Liu W F, and Zhang J 2015 Chin. Phys. Lett. 32 094202 |
[33] | Zhao P Q, Hu D S, Wu X L 2005 Chin. Phys. Lett. 22 1492 |
1.2 nm||
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|