Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 058503    DOI: 10.1088/0256-307X/40/5/058503
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Enhancement of Carrier Mobility in Semiconductor Nanostructures by Carrier Distribution Engineering
Binxi Liang, Luhao Liu, Jiachen Tang, Jian Chen, Yi Shi*, and Songlin Li*
School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
Cite this article:   
Binxi Liang, Luhao Liu, Jiachen Tang et al  2023 Chin. Phys. Lett. 40 058503
Download: PDF(1670KB)   PDF(mobile)(1684KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Two-dimensional (2D) van der Waals semiconductors are appealing for low-power transistors. Here, we show the feasibility in enhancing carrier mobility in 2D semiconductors through engineering the vertical distribution of carriers confined inside ultrathin channels via symmetrizing gate configuration or increasing channel thickness. Through self-consistently solving the Schrödinger–Poisson equations, the shapes of electron envelope functions are extensively investigated by clarifying their relationship with gate configuration, channel thickness, dielectric permittivity, and electron density. The impacts of electron distribution variation on various carrier scattering matrix elements and overall carrier mobility are insightfully clarified. It is found that the carrier mobility can be generally enhanced in the dual-gated configuration due to the centralization of carrier redistribution in the nanometer-thick semiconductor channels and the rate of increase reaches up to 23% in HfO$_{2}$ dual-gated 10-layer MoS$_{2}$ channels. This finding represents a viable strategy for performance optimization in transistors consisting of 2D semiconductors.
Received: 21 March 2023      Published: 01 May 2023
PACS:  85.30.Tv (Field effect devices)  
  85.35.-p (Nanoelectronic devices)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.50.Bk (General theory, scattering mechanisms)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/058503       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/058503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Binxi Liang
Luhao Liu
Jiachen Tang
Jian Chen
Yi Shi
and Songlin Li
[1] Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, and Kong J 2021 Nature 593 211
[2] Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, and Javey A 2016 Science 354 99
[3] Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, and Koppens F H 2019 Nature 573 507
[4] Quhe R, Xu L, Liu S, Yang C, Wang Y, Li H, Yang J, Li Q, Shi B, Li Y, Pan Y, Sun X, Li J, Weng M, Zhang H, Guo Y, Xu L, Tang H, Dong J, Yang J, Zhang Z, Lei M, Pan F, and Lu J 2021 Phys. Rep. 938 1
[5] Meng W Q, Xu F F, Yu Z H, Tao T, Shao L G, Liu L W, Li T T, Wen K C, Wang J P, He L B, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y, and Wang X 2021 Nat. Nanotechnol. 16 1231
[6] Shin J, Kim H, Sundaram S, Jeong J, Park B I, Chang C S, Choi J, Kim T, Saravanapavanantham M, Lu K, Kim S, Suh J M, Kim K S, Song M K, Liu Y, Qiao K, Kim J H, Kim Y, Kang J H, Kim J, Lee D, Lee J, Kim J S, Lee H E, Yeon H, Kum H S, Bae S H, Bulovic V, Yu K J, Lee K, Chung K, Hong Y J, Ougazzaden A, and Kim J 2023 Nature 614 81
[7] Hwangbo S, Hu L, Hoang A T, Choi J Y, and Ahn J H 2022 Nat. Nanotechnol. 17 500
[8] Ieong M, Doris B, Kedzierski J, Rim K, and Yang M 2004 Science 306 2057
[9] Yan R H, Ourmazd A, and Lee K 1992 IEEE Trans. Electron Devices 39 1704
[10] Hisamoto D, Kaga T, Kawamoto Y, and Takeda E 1989 IEEE International Electron Devices Meeting (Washington, DC, USA) pp 833–836
[11] He X, Fronheiser J, Zhao P, Hu Z, Uppal S, Wu X, Hu Y, Sporer R, Qin L, Krishnan R, Bazizi E M, Carter R, Tabakman K, Jha A K, Yu H, Hu O, Choi D, Lee J G, Samavedam S B, and Sohn D K 2017 IEEE International Electron Devices Meeting (2–6 December 2017, San Francisco, CA) pp 2021–2024
[12] Bhoir M S, Chiarella T, Ragnarsson L Å, Mitard J, Terzeiva V, Horiguchi N, and Mohapatra N R 2019 IEEE J. Electron Devices Soc. 7 1217
[13] Jin S, Fischetti M V, and Tang T W 2007 IEEE Trans. Electron Devices 54 2191
[14] Gomez L, Aberg I, and Hoyt J L 2007 IEEE Electron Device Lett. 28 285
[15] Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, and Colombo L 2014 Nat. Nanotechnol. 9 768
[16] Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534
[17] Radisavljevic B and Kis A 2013 Nat. Mater. 12 815
[18] Chhowalla M, Jena D, and Zhang H 2016 Nat. Rev. Mater. 1 16052
[19] Liu Y, Duan X, Shin H J, Park S, Huang Y, and Duan X 2021 Nature 591 43
[20] Ju S H, Liang B X, Zhou J, Pan D F, Shi Y, and Li S L 2022 Nano Lett. 22 6671
[21] Zeng L, Xin Z, Chen S, Du G, Kang J, and Liu X 2013 Appl. Phys. Lett. 103 113505
[22] Ma N and Jena D 2014 Phys. Rev. X 4 011043
[23] Li S L, Tsukagoshi K, Orgiu E, and Samori P 2016 Chem. Soc. Rev. 45 118
[24] Ando T, Fowler A B, and Stern F 1982 Rev. Mod. Phys. 54 437
[25] Fang F and Howard W 1966 Phys. Rev. Lett. 16 797
[26] Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W, and Kim K 2012 Nat. Commun. 3 1011
[27] Jena D and Konar A 2007 Phys. Rev. Lett. 98 136805
[28] Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316
[29] Li S L, Wakabayashi K, Xu Y, Nakaharai S, Komatsu K, Li W W, Lin Y F, Aparecido-Ferreira A, and Tsukagoshi K 2013 Nano Lett. 13 3546
[30] Stern F 1970 J. Comput. Phys. 6 56
[31]Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (Boston, MA: Springer)
[32] Trolle M L, Pedersen T G, and Véniard V 2017 Sci. Rep. 7 39844
[33] Fischetti M V, Neumayer D A, and Cartier E A 2001 J. Appl. Phys. 90 4587
[34] Maldague P F 1978 Surf. Sci. 73 296
[35] Wang S Q and Mahan G D 1972 Phys. Rev. B 6 4517
[36] Konar A, Fang T, and Jena D 2010 Phys. Rev. B 82 115452
[37] Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y, and Wang X 2014 Nat. Commun. 5 5290
[38] Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, and Zhang Z 2015 Nat. Commun. 6 6293
[39] Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615
[40] Kumar A and Ahluwalia P 2012 Physica B 407 4627
[41] Perebeinos V and Avouris P 2010 Phys. Rev. B 81 195442
[42] Liang B X, Wang A J, Zhou J, Ju S H, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S 2022 ACS Appl. Mater. & Interfaces 14 18697
[43] Kaasbjerg K, Thygesen K S, and Jacobsen K W 2012 Phys. Rev. B 85 115317
Related articles from Frontiers Journals
[1] Yinjiang Shao, Jian Zhou, Ning Xu, Jian Chen, Kenji Watanabe, Takashi Taniguchi, Yi Shi, and Songlin Li. Intrinsic Electronic Properties of BN-Encapsulated, van der Waals Contacted MoSe$_{2}$ Field-Effect Transistors[J]. Chin. Phys. Lett., 2023, 40(6): 058503
[2] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 058503
[3] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 058503
[4] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 058503
[5] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 058503
[6] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 058503
[7] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 058503
[8] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 058503
[9] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 058503
[10] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 058503
[11] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 058503
[12] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 058503
[13] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 058503
[14] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 058503
[15] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 058503
Viewed
Full text


Abstract