CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Enhancement of Carrier Mobility in Semiconductor Nanostructures by Carrier Distribution Engineering |
Binxi Liang, Luhao Liu, Jiachen Tang, Jian Chen, Yi Shi*, and Songlin Li* |
School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China |
|
Cite this article: |
Binxi Liang, Luhao Liu, Jiachen Tang et al 2023 Chin. Phys. Lett. 40 058503 |
|
|
Abstract Two-dimensional (2D) van der Waals semiconductors are appealing for low-power transistors. Here, we show the feasibility in enhancing carrier mobility in 2D semiconductors through engineering the vertical distribution of carriers confined inside ultrathin channels via symmetrizing gate configuration or increasing channel thickness. Through self-consistently solving the Schrödinger–Poisson equations, the shapes of electron envelope functions are extensively investigated by clarifying their relationship with gate configuration, channel thickness, dielectric permittivity, and electron density. The impacts of electron distribution variation on various carrier scattering matrix elements and overall carrier mobility are insightfully clarified. It is found that the carrier mobility can be generally enhanced in the dual-gated configuration due to the centralization of carrier redistribution in the nanometer-thick semiconductor channels and the rate of increase reaches up to 23% in HfO$_{2}$ dual-gated 10-layer MoS$_{2}$ channels. This finding represents a viable strategy for performance optimization in transistors consisting of 2D semiconductors.
|
|
Received: 21 March 2023
Published: 01 May 2023
|
|
PACS: |
85.30.Tv
|
(Field effect devices)
|
|
85.35.-p
|
(Nanoelectronic devices)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
73.50.Bk
|
(General theory, scattering mechanisms)
|
|
|
|
|
[1] | Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J, and Kong J 2021 Nature 593 211 |
[2] | Desai S B, Madhvapathy S R, Sachid A B, Llinas J P, Wang Q, Ahn G H, Pitner G, Kim M J, Bokor J, Hu C, Wong H S P, and Javey A 2016 Science 354 99 |
[3] | Akinwande D, Huyghebaert C, Wang C H, Serna M I, Goossens S, Li L J, Wong H S P, and Koppens F H 2019 Nature 573 507 |
[4] | Quhe R, Xu L, Liu S, Yang C, Wang Y, Li H, Yang J, Li Q, Shi B, Li Y, Pan Y, Sun X, Li J, Weng M, Zhang H, Guo Y, Xu L, Tang H, Dong J, Yang J, Zhang Z, Lei M, Pan F, and Lu J 2021 Phys. Rep. 938 1 |
[5] | Meng W Q, Xu F F, Yu Z H, Tao T, Shao L G, Liu L W, Li T T, Wen K C, Wang J P, He L B, Sun L, Li W, Ning H, Dai N, Qin F, Tu X, Pan D, He S, Li D, Zheng Y, Lu Y, Liu B, Zhang R, Shi Y, and Wang X 2021 Nat. Nanotechnol. 16 1231 |
[6] | Shin J, Kim H, Sundaram S, Jeong J, Park B I, Chang C S, Choi J, Kim T, Saravanapavanantham M, Lu K, Kim S, Suh J M, Kim K S, Song M K, Liu Y, Qiao K, Kim J H, Kim Y, Kang J H, Kim J, Lee D, Lee J, Kim J S, Lee H E, Yeon H, Kum H S, Bae S H, Bulovic V, Yu K J, Lee K, Chung K, Hong Y J, Ougazzaden A, and Kim J 2023 Nature 614 81 |
[7] | Hwangbo S, Hu L, Hoang A T, Choi J Y, and Ahn J H 2022 Nat. Nanotechnol. 17 500 |
[8] | Ieong M, Doris B, Kedzierski J, Rim K, and Yang M 2004 Science 306 2057 |
[9] | Yan R H, Ourmazd A, and Lee K 1992 IEEE Trans. Electron Devices 39 1704 |
[10] | Hisamoto D, Kaga T, Kawamoto Y, and Takeda E 1989 IEEE International Electron Devices Meeting (Washington, DC, USA) pp 833–836 |
[11] | He X, Fronheiser J, Zhao P, Hu Z, Uppal S, Wu X, Hu Y, Sporer R, Qin L, Krishnan R, Bazizi E M, Carter R, Tabakman K, Jha A K, Yu H, Hu O, Choi D, Lee J G, Samavedam S B, and Sohn D K 2017 IEEE International Electron Devices Meeting (2–6 December 2017, San Francisco, CA) pp 2021–2024 |
[12] | Bhoir M S, Chiarella T, Ragnarsson L Å, Mitard J, Terzeiva V, Horiguchi N, and Mohapatra N R 2019 IEEE J. Electron Devices Soc. 7 1217 |
[13] | Jin S, Fischetti M V, and Tang T W 2007 IEEE Trans. Electron Devices 54 2191 |
[14] | Gomez L, Aberg I, and Hoyt J L 2007 IEEE Electron Device Lett. 28 285 |
[15] | Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, and Colombo L 2014 Nat. Nanotechnol. 9 768 |
[16] | Cui X, Lee G H, Kim Y D, Arefe G, Huang P Y, Lee C H, Chenet D A, Zhang X, Wang L, Ye F, Pizzocchero F, Jessen B S, Watanabe K, Taniguchi T, Muller D A, Low T, Kim P, and Hone J 2015 Nat. Nanotechnol. 10 534 |
[17] | Radisavljevic B and Kis A 2013 Nat. Mater. 12 815 |
[18] | Chhowalla M, Jena D, and Zhang H 2016 Nat. Rev. Mater. 1 16052 |
[19] | Liu Y, Duan X, Shin H J, Park S, Huang Y, and Duan X 2021 Nature 591 43 |
[20] | Ju S H, Liang B X, Zhou J, Pan D F, Shi Y, and Li S L 2022 Nano Lett. 22 6671 |
[21] | Zeng L, Xin Z, Chen S, Du G, Kang J, and Liu X 2013 Appl. Phys. Lett. 103 113505 |
[22] | Ma N and Jena D 2014 Phys. Rev. X 4 011043 |
[23] | Li S L, Tsukagoshi K, Orgiu E, and Samori P 2016 Chem. Soc. Rev. 45 118 |
[24] | Ando T, Fowler A B, and Stern F 1982 Rev. Mod. Phys. 54 437 |
[25] | Fang F and Howard W 1966 Phys. Rev. Lett. 16 797 |
[26] | Kim S, Konar A, Hwang W S, Lee J H, Lee J, Yang J, Jung C, Kim H, Yoo J B, Choi J Y, Jin Y W, Lee S Y, Jena D, Choi W, and Kim K 2012 Nat. Commun. 3 1011 |
[27] | Jena D and Konar A 2007 Phys. Rev. Lett. 98 136805 |
[28] | Ong Z Y and Fischetti M V 2013 Phys. Rev. B 88 165316 |
[29] | Li S L, Wakabayashi K, Xu Y, Nakaharai S, Komatsu K, Li W W, Lin Y F, Aparecido-Ferreira A, and Tsukagoshi K 2013 Nano Lett. 13 3546 |
[30] | Stern F 1970 J. Comput. Phys. 6 56 |
[31] | Colinge J P 2008 FinFETs and Other Multi-Gate Transistors (Boston, MA: Springer) |
[32] | Trolle M L, Pedersen T G, and Véniard V 2017 Sci. Rep. 7 39844 |
[33] | Fischetti M V, Neumayer D A, and Cartier E A 2001 J. Appl. Phys. 90 4587 |
[34] | Maldague P F 1978 Surf. Sci. 73 296 |
[35] | Wang S Q and Mahan G D 1972 Phys. Rev. B 6 4517 |
[36] | Konar A, Fang T, and Jena D 2010 Phys. Rev. B 82 115452 |
[37] | Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang Y W, Shi Y, and Wang X 2014 Nat. Commun. 5 5290 |
[38] | Hong J H, Hu Z X, Probert M, Li K, Lv D H, Yang X, Gu L, Mao N, Feng Q, Xie L, Zhang J, Wu D, Zhang Z, Jin C, Ji W, Zhang X, Yuan J, and Zhang Z 2015 Nat. Commun. 6 6293 |
[39] | Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615 |
[40] | Kumar A and Ahluwalia P 2012 Physica B 407 4627 |
[41] | Perebeinos V and Avouris P 2010 Phys. Rev. B 81 195442 |
[42] | Liang B X, Wang A J, Zhou J, Ju S H, Chen J, Watanabe K, Taniguchi T, Shi Y, and Li S 2022 ACS Appl. Mater. & Interfaces 14 18697 |
[43] | Kaasbjerg K, Thygesen K S, and Jacobsen K W 2012 Phys. Rev. B 85 115317 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|