Chin. Phys. Lett.  2023, Vol. 40 Issue (5): 057701    DOI: 10.1088/0256-307X/40/5/057701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Magnetic Phase Transition in Strained Two-Dimensional CrSeTe Monolayer
Zhiqiang Ji, Tian Huang, Ying Li, Xiaoyu Liu, Lujun Wei, Hong Wu, Jimeng Jin*, Yong Pu*, and Feng Li*
New Energy Technology Engineering Laboratory of Jiangsu Provence & School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Cite this article:   
Zhiqiang Ji, Tian Huang, Ying Li et al  2023 Chin. Phys. Lett. 40 057701
Download: PDF(16641KB)   PDF(mobile)(16646KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Tunable magnetic phase transition in two-dimensional materials is a fascinating subject of research. We perform first-principle calculations based on density functional theory to clarify the magnetic property of CrSeTe monolayer modulated by the biaxial compressive strain. Based on the stable structure confirmed by the phonon calculation, CrSeTe is determined to be a ferromagnetic metal that undergoes a phase transition from a ferromagnetic state to an antiferromagnetic state with nearly 2.75% compressive strain. We identify the stress-magnetism behavior originating from the changes in interactions between the nearest-neighboring Cr atoms ($J_{1}$) and the next-nearest-neighboring Cr atoms ($J_{2}$). Through Monte Carlo simulation, we find that the Curie temperature of the CrSeTe monolayer is 160 K. The CrSeTe monolayer could be an intriguing platform for the two-dimensional systems and potential spintronic material.
Received: 18 February 2023      Published: 20 April 2023
PACS:  77.80.B- (Phase transitions and Curie point)  
  31.15.A- (Ab initio calculations)  
  73.20.At (Surface states, band structure, electron density of states)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/40/5/057701       OR      https://cpl.iphy.ac.cn/Y2023/V40/I5/057701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiqiang Ji
Tian Huang
Ying Li
Xiaoyu Liu
Lujun Wei
Hong Wu
Jimeng Jin
Yong Pu
and Feng Li
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666
[2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S, and Firsov A A 2005 Nature 438 197
[3] Neto A H C, Guinea F, Peres N M R, Novoselov K S, and Geim A K 2009 Rev. Mod. Phys. 81 109
[4] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265
[5] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270
[6] Deng Y J, Yu Y J, Song Y C, Zhang J Z, Wang N Z, Sun Z Y, Yi Y F, Wu Y Z, Wu S W, Zhu J Y, Wang J, Chen X H, and Zhang Y B 2018 Nature 563 94
[7] Zhang G J, Guo F, Wu H, Wen X K, Yang L, Jin W, Zhang W, and Chang H X 2022 Nat. Commun. 13 5067
[8] Lin M W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, and Xiao K 2016 J. Mater. Chem. C 4 315
[9] Zhang Z W, Shang J Z, Jiang C Y, Rasmita A, Gao W B, and Yu T 2019 Nano Lett. 19 3138
[10] McGuire M A, Clark G, Santosh K C, Chance W M, Jellison G E, Cooper V R, Xu X, and Sales B C 2017 Phys. Rev. Mater. 1 014001
[11] Lu A Y, Zhu H, Xiao J, Chuu C P, Han Y, Chiu M H, Cheng C C, Yang C W, Wei K H, Yang Y, Wang Y, Sokaras D, Nordlund D, Yang P, Muller D A, Chou M Y, Zhang X, and Li J L 2017 Nat. Nanotechnol. 12 744
[12] Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, and Lou J 2017 ACS Nano 11 8192
[13] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z, Sun G, Zhao B, Ma H, Wu R, Wei Z, Liu Y, Liao L, Yu Y, Huang Y, Xu X, Duan X, Ji W, and Duan X 2021 Nat. Mater. 20 818
[14] Freitas D C, Weht R, Sulpice A, Remenyi G, Strobel P, Gay F, Marcus J, and Núñez-Regueiro M 2015 J. Phys.: Condens. Matter 27 176002
[15] Sun X D, Li W Y, Wang X, Sui Q, Zhang T Y, Wang Z, Liu L, Li D, Feng S, and Zhong S Y 2020 Nano Res. 13 3358
[16] Zhang X Q, Lu Q S, Liu W Q, Niu W, Sun J B, Cook J, Vaninger M, Miceli P F, Singh D J, Lian S W, Chang T R, He X, Du J, He L, Zhang R, Bian G, and Xu Y 2021 Nat. Commun. 12 2492
[17] Hu T F, Wan W H, Ge Y F, and Liu Y 2020 J. Magn. Magn. Mater. 497 165941
[18] Barla P, Joshi V K, and Bhat S 2021 J. Comput. Electron. 20 805
[19] Jiang S W, Shan J, and Mak K F 2018 Nat. Mater. 17 406
[20] Ye H S, Zhu Y J, Bai D M, Zhang J T, Wu X S, and Wang J L 2021 Phys. Rev. B 103 035423
[21] Zhu W K, Xie S H, Lin H L, Zhang G J, Wu H, Hu T G, Wang Z, Zhang X M, Xu J H, Wang Y J, Zheng Y, Yan F, Zhang J, Zhao L, Patané A, Zhang J, Chang H, and Wang K 2022 Chin. Phys. Lett. 39 128501
[22] Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, and Wang K 2022 npj 2D Mater. Appl. 6 62
[23] Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patane A, Zutic I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 e2104658
[24] Lin H L, Yan F G, Hu C, Lv Q S, Zhu W K, Wang Z, Wei Z M, Chang K, and Wang K Y 2020 ACS Appl. Mater. & Interfaces 12 43921
[25] Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072
[26] Conley H J, Wang B, Ziegler J I, Haglund R F Jr, Pantelides S T, and Bolotin K I 2013 Nano Lett. 13 3626
[27] Zhang P, Peng X L, Qian T et al. 2016 Phys. Rev. B 94 104510
[28] Pei Q, Wang X C, Zou J J, and Wen B M 2018 Front. Phys. 13 137105
[29] Wang Y, Wang S S, Lu Y, Jiang J, and Yang S A 2016 Nano Lett. 16 4576
[30] Kresse G 1995 J. Non-Cryst. Solids 192–193 222
[31] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[32] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[33] Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[34] Rivero P, Loschen C, Moreira P R, and Illas F 2009 J. Comput. Chem. 30 2316
[35] Wang L, Maxisch T, and Ceder G 2006 Phys. Rev. B 73 195107
[36] Jang S W, Jeong M Y, Yoon H, Ryee S, and Han M J 2019 Phys. Rev. Mater. 3 031001
[37] Jiang P H, Wang C, Chen D H, Zhong Z C, Yuan Z, Lu Z Y, and Ji W 2019 Phys. Rev. B 99 144401
[38] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[39] Baroni S, Gironcoli S D, Corso A D, and Giannozzi P 2001 Rev. Mod. Phys. 73 515
[40] Cui Q R, Liang J H, Shao Z J, Cui P, and Yang H X 2020 Phys. Rev. B 102 094425
[41] Dey D, Ray A, and Yu L P 2022 Phys. Rev. Mater. 6 L061002
[42] Goodenough J B 1955 Phys. Rev. 100 564
[43] Kanamori J 1959 J. Phys. Chem. Solids 10 87
[44] Anderson P W 1959 Phys. Rev. 115 2
Related articles from Frontiers Journals
[1] Jian-Gang Kong, Qing-Xu Li, Jian Li, Yu Liu, and Jia-Ji Zhu. Self-Supervised Graph Neural Networks for Accurate Prediction of Néel Temperature[J]. Chin. Phys. Lett., 2022, 39(6): 057701
[2] Chenqiang Hua, Hua Bai, Yi Zheng, Zhu-An Xu, Shengyuan A. Yang, Yunhao Lu, and Su-Huai Wei. Strong Coupled Magnetic and Electric Ordering in Monolayer of Metal Thio(seleno)phosphates[J]. Chin. Phys. Lett., 2021, 38(7): 057701
[3] Hong-Mei Yin, Heng-Wei Zhou, Yi-Neng Huang. A New Model of Ferroelectric Phase Transition with Neglectable Tunneling Effect[J]. Chin. Phys. Lett., 2019, 36(7): 057701
[4] Hong-Bo Wu, Yi-Feng Duan, Chang-Ming Zhao, Kun Liu, Li-Xia Qin. First-Principles Investigations of Pb$_{0.5}$Ba$_{0.5}$TiO$_3$ Alloys Based on Structure Predictions[J]. Chin. Phys. Lett., 2016, 33(04): 057701
[5] XI Li-Ying, CHEN Huan-Ming, ZHENG Fu, GAO Hua, TONG Yang, MA Zhi. Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method[J]. Chin. Phys. Lett., 2015, 32(09): 057701
[6] WU Hong-Bo, DUAN Yi-Feng, LIU Kun, LV Dong, QIN Li-Xia, SHI Li-Wei, TANG Gang. Dynamic Investigations of Pressure-Induced Abnormal Phase Transitions in PbTiO3[J]. Chin. Phys. Lett., 2015, 32(5): 057701
[7] LIU Juan QIN Ying, LIU Xiao-Qiang, CHEN Xiang-Ming. Dielectric Characteristics in BiFeO3-Modified SrTiO3 Incipient Ferroelectric Ceramics[J]. Chin. Phys. Lett., 2015, 32(02): 057701
[8] ZHU Xiao-Li, CHEN Xiang-Ming. Ferroelectric Transition and Curie–Weiss Behavior in Some Filled Tungsten Bronze Ceramics[J]. Chin. Phys. Lett., 2014, 31(1): 057701
[9] LIU Yang**,PENG Xing-Ping. Validity of Nonlinear Thermodynamic Models in Ferroelectric-Paraelectric Bilayers and Superlattices[J]. Chin. Phys. Lett., 2012, 29(5): 057701
[10] LIU Yang**, PENG Xing-Ping . Strain Effects of the Structural Characteristics of Ferroelectric Transition in Single-Domain Epitaxial BiFeO3 Films[J]. Chin. Phys. Lett., 2011, 28(6): 057701
Viewed
Full text


Abstract